熱流体力学講義 
This presentation is the property of its rightful owner.
Sponsored Links
1 / 33

熱流体力学講義  ( 番外編) PowerPoint PPT Presentation


  • 41 Views
  • Uploaded on
  • Presentation posted in: General

熱流体力学講義  ( 番外編). 1. 1 各種物体の重心の定義と図心 1.2  重心および断面1次モーメントの求め方    線,円板,板材,円錐, 3 次元物体 1.3  各種物体の重心    第 1 章 重心の総合演習問題 2.1  断面2次モーメントについて 2.2  極断面2次モーメントの紹介 3.1  各種形状の物体の断面2次モーメントと断面係数    はりのまげ強さへの適用 4. 番外編 総合演習問題. 1.1  重心の定義. ☆ 3次元直交座標系における任意物体の各重心位置は,つぎの定義式 から求められる。. :直交座標系(zは重力方向).

Download Presentation

熱流体力学講義  ( 番外編)

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


6606607

熱流体力学講義 (番外編)

1.1 各種物体の重心の定義と図心

1.2 重心および断面1次モーメントの求め方

   線,円板,板材,円錐,3次元物体

1.3 各種物体の重心

   第1章 重心の総合演習問題

2.1 断面2次モーメントについて

2.2 極断面2次モーメントの紹介

3.1 各種形状の物体の断面2次モーメントと断面係数

   はりのまげ強さへの適用

4. 番外編 総合演習問題

熱流体力学


6606607

1.1 重心の定義

☆3次元直交座標系における任意物体の各重心位置は,つぎの定義式 から求められる。

:直交座標系(zは重力方向)

m:物体の全質量

ρ:物体の密度

V:物体の全体積

dV:微小要素の体積

熱流体力学


1 1 2 1

1.2 各種物体の重心または図心1.2.1 重心,図心および断面1次モーメントの求め方

☆まず物体の密度ρが一定で,物体の形状が(x,y)平面に限定され,重力z方向の厚さWが一定な平面的な物体について,一例として(xG)の位置を求める。

全体の質量mおよび区間dxにおける微小質量dmは,

同様にyGは

この形で求められる座標位置を図心という


6606607

1.2 断面1次モーメントの定義と図心

☆断面1次モーメント(面積モーメント) の定義;Jx,Jy

 単位:(m3)

☆図心とは;

 断面1次モーメントの定義から求められる図形の中心位置座標xG,yG

☆重心・図心xG,yGの求め方

 単位:(m)

☆注意:図心は直交2次元座標系に描かれた図形の面積モーメントの中心位置座標


6606607

1.2 断面1次モーメントの定義(続き)物体の重心を原点とする場合の断面1次モーメントは?

いま,上図左側の座標系    における物体の重心(xG,yG)を,右側に示す新しい座標系    の原点(0,0)に一致させ座標軸を平行移動させる。右側の新しい座標系   におけるつぎの1次モーメントJxおよびJyはいくらか。

熱流体力学


6606607

例題:3次元物体の重心密度ρ,板厚W,板幅t,長さL=一定の平板の場合

板厚W,板幅t,長さL=一定の平板の場合は

∴重心xG;

Q1:密度ρ,z方向の板厚W,y方向板幅tが一定の場合におけるyG,zGを求める公式を作りなさい。                       Ans

そこで,公式が作れて

Q2:z方向の奥行き幅がw=一定で,x方向の板厚がt=to+axと直線的に厚くなり,x=Lでt=4toとなる台形板の重心xGを求めなさい。Ans(xG=3L/5)

熱流体力学


6606607

1.3 各種物体の重心の例題(1)細長い線要素(丸棒)の重心

☆細長い線の密度をρ一定と仮定し, 線の直径をd,全長をLとし,微小線要素dxの質量をdm,全質量をmとすれば,

次の重心の定義式により

長い線,全長Lの重心がL/2になることは自明だよね。

☆こうして,細長い線の重心は線の1次モーメント積分に置きかえられ,質量モーメントxdmではなく,線モーメント(長さ×長さ)xdxで計算できるのだ。

すなわち

熱流体力学


1 3 2 2

1.3 各種物体の重心の例題(その2)(2)細長い円弧形状線要素の重心

☆円弧の線の場合は重心を求めるのに,半径rと角度θ座標で計算した方がより簡単で,分かりやすい。すなわち,右図において

☆さて,線要素の重心は次に示すように,線積分xdLに置き換えられたので

Q:α=π(180°)の細長い半円線の重心XGを求めよ。Ans:XG=2r/π(約0.637r)

熱流体力学


1 3 3

1.3 各種物体の重心の例題(その3) (3)平面・板要素の重心,(ア)直角定規(スコヤ)の重心          

☆板厚が一定な直角定規の重心

この場合は,右図に示すように,直角定規を構成する2つの要素の面積A1,A2とその個々要素1,2の重心位置が事前に分かっているから,モーメントの釣り合いの考え方を使うほうが簡単に重心が求められる。すなわち,

☆重要

全体の面積モーメント=個々の面積モーメントの和

X方向重心

y方向重心


1 3 4

1.3 各種物体の重心の例題(その4)(イ) 直角3角定規の重心

☆続いて,右図に示す厚さ一定の直角3角定規の重心を求めてみよう。この場合も,厚さと密度が一定であるから重心は面積モーメントで求められ,

ここで断面1次モーメントは

☆図の3角形の相似に着目して

同様にして,


1 3 5

1.3 各種物体の重心の例題(その5)(ウ)板厚一定の半円板の重心

☆つぎに,右図に示す板厚一定の半円板の重心を各自空欄を埋めながら導こう。微小扇形の面積dAは,扇を三角形と近似すれば

したがって,重心は定義どおり積分して

熱流体力学


1 3 6

1.3 各種物体の重心の例題(その6)(エ)円錐体の重心

☆右図に示される底面半径がRで,高さがhである円錐体の重心を空欄を埋めながら各自で求めよう。まず,円錐体の全体積および微小な幅dxの円板の体積dVは,それぞれ ,

さらに,図に示す三角形の相似に着目して,

この関係をdVに代入すれば

☆重要:立方体の重心は物体の密度が一定であれば体積モーメント(xdV)で求められるから,(証明は各自でしなさい)

熱流体力学


1 3 7

1.3 各種物体の重心の演習例題(その7)(オ)半球の重心

問:右図に示した半球の重心を以下の手順で求めよ 。

ア)半球の全体積Vは:

イ)重心の定義を密度一定の場合に使うと

で与えられるから

ウ)ここで,

とおくと,

となるから,上の式が積分でき,

ここで,

熱流体力学


6606607

☆重心と図心のまとめ(密度は一定と仮定した場合)

重心の定義

重心・図心の求め方(平面物体,奥行き幅は一定の場合)

重心・図心の求め方(細長い線)

重心・図心の求め方(体積要素)

熱流体力学


6606607

第1章 重心の総合演習問題(その1)

問:図に示す複数の線要素からなる物体の重心を求めよ。ただし,細い線で作られた円弧の重心は既に求めたように既知で以下に示す値が使えるものとする。

円弧の重心:

熱流体力学


6606607

第1章 重心の総合演習問題(その2)

問:上図に示す,板厚が一定な3角板と孔ありの長方形板から構成される,平板の重心xG,yGを求めよ。

熱流体力学


6606607

第1章 重心の総合演習問題(その3)

問:図に示す円錐体,円柱および半球から構成される物体の重心を求めよ。また,特殊な例として,

の場合の重心はいくらになるか。

熱流体力学


6606607

第2章 断面2次モーメント

☆すでに3年・4年の「材料の力学」において,単純曲げを受けるはりの応力が,はりの重心からの距離eと断面2次モーメント  によって影響されることを学んだと思う。

     復習:

☆この章の学習目的は

  1)断面2次モーメント  の定義を理解し,覚えること。

  2)断面係数Zの定義を覚えること。

  3)任意断面形状を持ったはりの断面2次モーメントを

    計算できるようにすること。


2 1 parallel axis theorem 1

2.1 長方形断面形状のはりにおける断面2次モーメント平行軸の定理 (parallel axis theorem)その1

☆上図において,重心G(図心)を通る座標系(x,y)において,x軸まわりの断面2次モーメントⅠxGおよびy軸まわりの断面2次モーメントⅠyGは

図の長方形の場合は

熱流体力学


2 1 parallel axis theorem 2

2.1 長方形断面形状のはりにおける断面2次モーメント平行軸の定理 (parallel axis theorem)その2

☆一方,図の右側に示されるように,重心Gから距離d離れた任意のX軸まわりの断面2次モーメントIxは,定義に従って,                         

である。さらに,左のx-y座標と右のX-Y座標を比較すれば

であるから,

熱流体力学


6606607

2.1 平行軸の定理のまとめ

熱流体力学


6606607

2.2 平行軸の定理の応用        (1)3角形断面のはり

☆まず底辺ABに平行で,重心Gを通る断面2次モーメントIxGは

☆3角はりの場合,重心Gと底辺までの距離dおよび面積Aは

☆AB軸まわりの断面2次モーメントIxは


6606607

2.2 平行軸の定理の応用        (2)円形断面のはり

☆断面形状が円形の場合は図に示すように,円筒座標 r,θで断面2次モーメントを求めた方が計算は簡単である。

☆任意点における幅b(y)とその微小面積dAは

☆したがって,重心Gをとおるx軸周りの断面2次モーメントIxGは

丸棒は軸対称だから

IxG=IyG

熱流体力学


2 2 h

2.2 平行軸の定理の応用 (3)H形鋼断面のはり

☆右図に示すH形鋼を,断面積A0の

  長方形板材から2個の断面積A1

の板材を引いたものと考える。すなわち,重心Gをとおるx軸まわりの断面2次モーメントIxGは,

熱流体力学


2 3 ip

2.3 極断面2次モーメント極断面2次モーメメントIpの紹介

☆円形断面のように軸対称物体の断面2次モーメントIxG,IyGなどは以下に解説する極断面2次モーメメントIpを用いたほうが容易に求められる。

Ipの定義

熱流体力学


6606607

2.3 極断面2次モーメントを利用した丸棒の断面2次モーメメントの求め方の紹介

☆図に示した円形はりの断面2次モーメンIxG,IyGトを極断面2次モーメントIpの定義式から求めなさい。

ところで,円形断面では軸対称であるから

極断面2次モーメントをといて

微小面積dAは?

熱流体力学


2 4 6

2.4 断面2次モーメントの演習問題(1)銭形平次の6文銭

(1)図に示す丸棒(円板)から長方形を切り出し,穴抜きにした時の断面2次モーメントを求めよ。(いわゆる,銭方平次の6文銭)

解答:

熱流体力学


6606607

2.4 断面2次モーメントの演習問題(2)三角・四角板+穴抜き円板

(2)右図に示される孔抜き3角板と長方形板から構成される物体の底辺まわりの断面2次モーメントを,以下の設問手順にしたがって求めよう。

Q1穴抜き合成板材の全面積Aはいくら?

Q2;底辺軸から測った,

1)四角板材の重心座標はいくらか?

2)3角板の重心座標は底辺からいくらか?

3)穴抜き円板の重心座標はいくらか?。

4)板材のx軸からの断面2次モーメントはいくらか?          

5)3角板のx軸からの断面2次モーメントはいくらか?

6)穴抜き円板のx軸からの断面2次モーメントはいくらか?

7)以上の結果を使って,Ixを求めよ。

8)この図形の重心座標yGはいくらか?

熱流体力学


6606607

2.4 断面2次モーメントの演習問題(3)家の側面図を描いてみました

(3)図に示すような家の側面図を書いてみました。このような窓付き板材の軸まわりの断面2次モーメントを以下の設問手順にしたがって求めよう。             

Q1;合成板材の全面積はいくらか?

Q2;底辺軸から測った,

1)板材の重心座標はいくらか?

2)三角板の重心座標はい くらか?

3)穴抜き円板の重心座標はいくらか?

さて,平行軸の定理,を使って,        

4)板材の軸からの断面2次モーメントはいくらか?

5)三角板の軸からの断面2次モーメントはいくらか?

6)穴抜き円板のx軸からの断面2次モーメントはいくらか?   

7)穴抜き2枚の板材のx軸からの2次モーメントはいくらか?

8)以上の結果を使って,この家のIxを求めよ。 

9)この家の重心yGはいくらか?

熱流体力学


6606607

3.1 各種形状の物体の断面2次モーメントと断面係数(その1)

☆復習:断面係数の定義

ちなみに,右図に示す長方形断面のはりの断面2次モーメントおよび断面係数Zは

熱流体力学


6606607

3.1 各種形状の物体の断面2次モーメントと断面係数(その2)

1.図(a),(b),(c)に示す,長方形はりの中立軸に対称な断面の断面係数を求めなさい。

解答:

(a)の長方形が横置きの場合

(b)の長方形が縦置きの場合

(c)角パイプの場合

熱流体力学


6606607

3.1各種形状の物体の断面2次モーメントと断面係数(その3)

2.図(a),(b)に示す円形はりの断面係数を求めなさい。

解答:

(a)中実丸棒の断面係数

(b)中空丸棒の断面係数

 この場合の断面2次モ-メントは,中実丸棒から中空丸棒の断面2次モーメントを引けばよい。すなわち,

熱流体力学


6606607

☆総合演習問題

1.右図に示すような直径d一定の丸棒から長方形断面(h×b)を持ったはりを切り出し,その断面係数Zを最大としたい。hとbの比はいくらにすればよいか

2.断面が右図に示すような逆T字型はりに一様な曲げモーメントが作用するとき,このはりの最大応力が最大圧縮応力の1/3になるためにはフランジ幅xはどれだけあればよいか。


  • Login