dan cecil uah cecild@uah edu
Download
Skip this Video
Download Presentation
Cell Tracking Algorithm (R3)

Loading in 2 Seconds...

play fullscreen
1 / 16

Cell Tracking Algorithm (R3) - PowerPoint PPT Presentation


  • 100 Views
  • Uploaded on

Dan Cecil, UAH [email protected] Cell Tracking Algorithm (R3). Objectives:. Fully automated tracking of thunderstorms, so lightning statistics can be trended Cell Tracker is to be the “home” for Lightning Jump Algorithm - LJA depends on time history of flashes in the tracked cell

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Cell Tracking Algorithm (R3)' - jon


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
objectives
Objectives:

Fully automated tracking of thunderstorms, so lightning statistics can be trended

Cell Tracker is to be the “home” for Lightning Jump Algorithm - LJA depends on time history of flashes in the tracked cell

Primary interest in scale of a few GLM pixels (100’s km2), appropriate for NWS severe wx warnings

Also interested in tracking larger features (e.g. lines) that are hazard to aviation, outdoor events

1st step cell id
1st step: Cell ID

Most users familiar with using radar reflectivity

1st step cell id1
1st step: Cell ID

Pretty easy for a human (subjective cell ID)

cell id from glm
Cell ID from GLM

High flash rate storms easy to pick out subjectively

Low flash rate storms poorly depicted

approach
Approach:

Using WDSSII w2segmotionll (Lakshmanan et al. 2009; Lakshmanan and Smith 2010; acknowledgment to Lak, he has been helpful with getting this running)

Try to make optimal use of available inputs (depends on location, time)

Track GLM flashes by themselves

Track combination of GLM + ABI info

Track combination of GLM + Radar (where available)

Working with LMA-based GLM proxy flashes from Bateman and Mach

w2segmotionll
w2segmotionll

Robust product primarily used with radar data, but general enough to apply to other fields

No need for us to re-invent a wheel

Searches for local maxima in the tracked field

Adds pixels surrounding the local max until the “cell” has exceeded a minimum size (enhanced watershed method)

We set different sizes, to simultaneously track thunderstorm cells and larger mesoscale features

Many options available; trying to find “best” settings and best fields to track

flash rate time series
Flash rate time series

Top: A bad cell track --> user has to piece together a time series from multiple cell IDs

Bottom: A good cell track --> automatic generation of time series from a single cell ID

tracked fields
Tracked fields
  • Two fields currently being tested:
  • 5-minute Flash Counts, updated every 1-minute
  • “VIL-FRD”: A combination of 5-minute Flash Count and radar-derived VIL, weighting high flash counts more heavily:
    • Scale both VIL and Flash Count to range between 0-100, then take the one with larger value
    • VIL = 100 * ( VIL < 45 ) / 45
    • Flash Count = 100 * sqrt( ( Flash Count < 45 ) / 45 )
1 and 5 min flash count movies
1 and 5-min Flash Count movies

Top:

1-minute Flash Counts

Bottom:

5-minute Flash Counts, updated every minute

Accumulating a few minutes of flashes allows more consistent tracking

vil frd movies

Combined VIL - Flashcount field tracked

Bottom: Intermediate scale cells, aimed toward something appropriate for NWS warnings

Works well for some cells (HSV), not others

Small, short lived cells probably not important, but distracting

VIL-FRD movies
lots of ways cells can be defined with different settings
Lots of ways cells can be defined, with different settings

24 different versions of cell ID, all at the same valid time

tracking larger scale storm complexes
Tracking larger scale storm complexes

Pick out the large blobs that aircraft should divert around, for example

summary
Summary
  • Using w2segmotionll (WDSSII) to define / track cells
  • Lots of options being tested
  • Some options good for particular cases, but trying to decide which work best across-the-board
  • Tracked fields:
    • 5-minute flash counts
    • Combination 5-min flash count + VIL from radar
    • Combination 5-min flash count + ABI field (suggestions wanted)
summary1
Summary

Different spatial scales tracked simultaneously, appropriate for NWS warnings (small scale) or aviation (large scale)

Statistics generated for each cell (total flash count, max pixel flash count, time tendencies…)

To get total flash count right, need to adjust w2segmotion to include “foothills” around the cell

Since cells will have different sizes, affected by pixel geometry, maybe sum up the flashes for the top few (~5?) GLM pixels in each cell

ad