1 / 48

Сверхмощные лазеры - инструмент для исследования свойств вакуума

100-лет со дня рождения И . Я . Померанчука ИТЭФ 5-6 июня 2013 . Сверхмощные лазеры - инструмент для исследования свойств вакуума. Н.Б . Нарожный. Национальный Исследовательский Ядерный Университет МИФИ. Extreme Light Road Map. G. Mourou. F. Sauter. Vacuum Polarization. IZEST C 3.

jerom
Download Presentation

Сверхмощные лазеры - инструмент для исследования свойств вакуума

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 100-лет со дня рождения И.Я.Померанчука ИТЭФ 5-6 июня 2013 • Сверхмощные лазеры - инструмент для исследования свойств вакуума Н.Б. Нарожный Национальный Исследовательский Ядерный Университет МИФИ

  2. Extreme Light Road Map G. Mourou F. Sauter Vacuum Polarization IZEST C3

  3. HERCULES Petawatt Laser Center for Ultrafast Optical Science (CUOS), Michigan USA Victor Yanovsky He directs the HERCULES laser - the highest intensity laser in the world, and is interested in high intensity laser physics, ultrahigh-intensity intensity interactions with solids, particle acceleration and X-ray generation in laser-matter interaction

  4. Most powerful facilities under construction or planning LMJ (France) NIF (LLNL, US) UFL-2M (VNIIEF, RF) 240 beams, 2MJ • 192 beams, 2.8MJ • 192 beams, 1.8MJ HiPER (GB) Laser Fusion High Field Sciense ELI XCELS (RF)

  5. ELI-Ultra High Field Facility ПЛАНИРУЕТСЯ: 1. Создание Ti:Saлазера, генерирующего импульсы длительностью 10 - 15-fs с энергией в районе 700 J(50 to 70 PW) 2. Активный фазовый контроль усиленных пучков и использование оптики с большой апертурой, позволит получить интенсивность порядка Место строительства еще д.б. определено 3. Комбинация10 одиночных 50 – 70-PW пучковприведет к пиковой мощности 500 – 700 PW и соответствующей интенсивности на мишени порядка или больше (Proposal for an European Extreme Light Infrastructure, www.extreme-light-infrastructure.eu)

  6. «Международный центр исследований экстремальных световых полей» (ЦИЭС)

  7. Комплекс будет включать 12 одинаковых каналов, в каждом из которых будет генерироваться импульс с энергией 300-400 Дж, длительностью 20-30 фс, максимальной интенсивностью при фокусировке более 10^23 Вт/см2

  8. QED is a nonlinear science at F. Sauter, 1931 W. Heisenberg, H. Euler, 1936 J. Schwinger, 1951

  9. The only experiment on Nonlinear QED – E144 (SLAC, 1996 -1997)

  10. Nonlinear Compton scattering C.Bula, et al., PRL, 76, 3116 (1996) C.Bamber, et al., PRD, 60, 092004(1999) Final Focus Test Beam at SLAC IP1 – interaction point, ECAL – silicon-tungsten calorimeter CCM1 – gas Čerenkov monitor schematic drawing of the experiment

  11. The multiphoton version of Breit-Wheeler process was observed D.L.Burke, et al., PRL, 79, 1626 (1997) C.Bamber, et al., PRD, 60, 092004(1999) Pair production: two-step process

  12. This was the first (and the only) laboratory evidence for inelastic light-by-light scattering involving only real photons!

  13. Parameters of E144 experiment Laser: λ=1.054μm (infrared) and λ=0.527μm (green) The laserintensity could be varied, the maximum focused intensity: Electron beam: The field was close to a monochromatic plane wave field Two Lorentz and gauge invariant parameters Dimensionless intensity parameter (classical nonlinearity parameter) Dynamical parameter (quantum nonlinearity parameter) At the proper frame of electron:

  14. Parameters of E144 experiment What we will have with new facilities? Fms optical pulses: Electrons: What does it mean experimentally?

  15. harmonics are undistinguishable, laser field works as a constant crossed field 1. 2. e-m cascades will be observed The effect was observed at SLAC experiment multiplicity = 0.02 Analogue of cosmic-ray air showers It could be the first experiment on laboratory astrophysics

  16. 3. Fms optical pulses: Electrons: Expansion parameter of perturbation theory at Narozhny, PRD, 1980 Perturbation theory does not work!

  17. Nonlinear QED vacuum polarization effects have never been observed! Is it possible with new facilities?

  18. Vacuum in the presence of an external e-m field is • a non-linear optical medium The start of “Nonlinear Optics in Vacuum” W. Heisenberg and H. Euler, Zeitschr. Phys. 98, 714 (1936) Hans Heinrich Euler (1909–1941) Werner Karl Heisenberg (1901-1976)

  19. F. Sauter, ZS. f. Phys. 69, 742, 1931 “This polarization of the vacuum to be studied below will give rise to a distinction between the vectors on the other” on the one hand and permeability of vacuum permittivity of vacuum

  20. Vacuum polarization effects 1. Birefringence and dichroism of vacuum • R. Baier, P. Breitenlohner, Acta Phys. Austr. 25, 212, 1967 • N.B. Narozhnyi, Zh. Eksp. Teor. Fiz. 55, 714 (1968) • [Sov. Phys. JETP 28, 371, 1969] • S.L. Adler, Ann. Phys. (NY) 67, 599 (1971) • I.A. Batalin, A.E. Shabad, Zh. Eksp. Teor. Fiz. 60, 894 (1971) • [Sov. Phys. JETP 33, 483, 1971] 2. Photon splitting • S.L. Adler, Ann. Phys. (NY) 67, 599 (1971) • Z. Bialynicka-Birula, I. Bialynicka-Birula, Phys.Rev D 2, 2341 (1971) • V.O. Papanyan, V.I. RitusZh. Eksp. Teor. Fiz. 61, 2231 (1971) • [Sov. Phys. JETP 33, 483, 1971] 3. Cherenkov radiation • T. Erber, Rev. Mod. Phys. 38, 626, 1966 • V.I. Ritus, Zh. Eksp. Teor. Fiz. 57, 2176 (1969) • [Sov. Phys. JETP 30, 1181, (1970)] • I.M. Dremin, Pis’maZh. Eksp. Teor. Fiz. 76, 185 (2002) • [JETP Lett. 76, 151, (2002)]

  21. 4. Self-focusing in vacuum • N.N. Rozanov, JETP, 86, 284 (1998) • M. Soljacˇic´ and M. Segev, Phys. Rev A, 62, 043817 (2000) • D. Kharzeev and K. Tuchin, Phys. Rev A, 75, 043807 (2007) 5. Light-by-light scattering • Di Piazza, K.Z. Hatsagortsyan, C.H. Keitel, Phys. Rev. D 72, 085005 (2005) • E. Lundström, et al.,Phys. Rev. Lett. 96, 083602 (2006) 6. Harmonics generation • A.E. Kaplan and Y.J. Ding, Phys. Rev. A 62, 043805 (2000) • A. Di Piazza, K.Z. Hatsagortsyan, C.H. Keitel, Phys. Rev. D 72, 085005 (2005) • A.M.Fedotov, N.B. Narozhny, Phys. Lett. A 362, 1 (2007)

  22. 7. Pair creation by e-m field in vacuum • W. Heisenberg and H. Euler, Zeitschr. Phys. 98, 714 (1936) • J. Schwinger, Phys.Rev., 82, 664 (1951) • N.B. Narozhny, A.I. Nikishov, Yad. Fiz. 11, 1072 (1970). • N.B. Narozhny, S.S. Bulanov, V.S. Popov, V.D. Mur, PLA 330, 1 (2004) • A.M. Fedotov, Las. Phys., 19, 214 (2009) The most promising nonlinear vacuum effect is PAIR PRODUCTION BY LASER FIELD

  23. pair creation by a laser field in vacuum becomes observable at intensities The probability for vacuum to stay vacuum in a constant electric field: - the Heisenberg-Euler correction to em field Lagrangian J. Schwinger, Phys.Rev., 82, 664 (1951)

  24. Laser pulse: • focal spotradius • pulse duration at

  25. Распространенная ошибка:

  26. The number of pairs created by an electromagnetic field • N.B. Narozhny, S.S. Bulanov, V.S. Popov, V.D. Mur, PLA 330, 1 (2004) In the reference frame where

  27. Pair production by a single focused pulse N.B. Narozhny, S.S. Bulanov, V.S. Popov, V.D. Mur, PLA 330, 1 (2004) A.M. Fedotov, Las. Phys., 19, 214 (2009) !!

  28. Number of pairs is growing very fast after the threshold value of intensity Compare the total energy of produced pairs with the energy of the laser pulse COLLAPSE OF THE LASER PULSE PAIR CREATION IMPOSES LIMITATION ON ATTAINABLE LASER INTENSITY!

  29. The threshold can be lowered essentially at the expense of MULTIPLE PULSES TECHNOLOGY Collision geometry (linear polarization) n=2 n=4 n=8 n=16

  30. The number of created pairs and threshold energy for different number of colliding pulses S. S. Bulanov, V.D. Mur, N.B. Narozhny, et al., PRL, 104, 220404 (2010)

  31. Pair creation from vacuum may be observed with laser fields of the strength 23 orders lower than the critical (Sauter) field ES.

  32. What will happen after creation of a single pair? Particles are accelerated by the field and … Meeting A. R. Bell and J. G. Kirk, Phys. Rev. Lett. 101, 200403 (2008). A.M. Fedotov and N.B. Narozhny, in Extreme Light Infrastructure: Report on the GC Meeting, 27-28 April 2009, Paris, http://www.extreme-light-infrastructure.eu A. M. Fedotov, N. B. Narozhny, G.Mourou and G. Korn, Phys. Rev. Lett. 105, 080402 (2010).

  33. Vacuum instability initiated by a seed particle • Acceleration: Cascade can be self-sustained if the field accelerates charged particles It is not the case for PWF or constant electromagnetic field, where is an integral of motion, Theself-sustained cascade can arise only in a focused laser field, or for colliding laser pulses

  34. Estimation: An electron can be accelerated by the field many times for 1 period

  35. The electron (positron) radiation lifetime (mean free path/c) • The photon lifetime • The escape time

  36. The following hierarchy of time scales should be respected for occurrence of electromagnetic cascade (for optical frequencies) - determines a natural threshold for electromagnetic cascades.

  37. The self-sustaining e-m cascades strongly differ from cosmic ray air showers The difference: the laser field is not only a target for primary particles, but also an accelerator for slow particles

  38. Fedotov, A. M.; Narozhny, N. B.; Mourou, G.; Korn, G. PRL, 105, 080402 (2010) FIG. 2. Pair production as a function of . The solid curve corresponds to the number of pairs produced by a single cascade process. The dotted curve shows the number of pairs produced by multiple cascades generated by pairs created by two colliding circularly polarized 10 fs laser pulses. The branching point corresponds to the threshold value of where the spontaneous pair production begins. The dash line shows the limit for determined by the energy of the laser pulse. The laser frequency ћω = 1 eV. The inset shows the magnified region of intersection of the curves.

  39. The QED cascades (avalanche production of hard photons and electron-positron pairs) catalyzes depletion of the initiating laser pulses. • This confirms the N. Bohr’s conjecture that the critical QED field strength can be never attained for a pair creating electromagnetic field!

  40. QED cascade stops when the laser energy is almost completely converted into the cascade energy.

  41. Development of e-m cascade by itself leads to depletion of the laser pulse!

  42. СПАСИБО ЗА ВНИМАНИЕ!

More Related