1 / 52

Molecular Structure & Covalent Bonding Theories

Chapter 8. Molecular Structure & Covalent Bonding Theories. Two Simple Theories of Covalent Bonding. Valence Shell Electron Pair Repulsion Theory VSEPR R. J. Gillespie - 1950’s Valence Bond Theory Hybridized orbitals L. Pauling - 1930’s & 40’s. VSEPR Theory.

jeroen
Download Presentation

Molecular Structure & Covalent Bonding Theories

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 8 Molecular Structure & Covalent Bonding Theories

  2. Two Simple Theories of Covalent Bonding • Valence Shell Electron Pair Repulsion Theory • VSEPR • R. J. Gillespie - 1950’s • Valence Bond Theory • Hybridized orbitals • L. Pauling - 1930’s & 40’s

  3. VSEPR Theory • regions of high electron density around the central atom are as far apart as possible to minimize repulsions • five basic shapes • based on # of regions of high electron density • several modifications of these five basic shapes will also be examined

  4. VSEPR Theory • Two regions of high electron density

  5. VSEPR Theory • Three regions of high electron density

  6. VSEPR Theory • Four regions of high electron density

  7. VSEPR Theory • Five regions of high electron density

  8. VSEPR Theory • Six regions of high electron density

  9. VSEPR Theory • electronic geometry– the arrangement of the valence shell electrons around the central atom • determined by the locations of regions of high electron density around the central atom(s) • molecular geometry- determined by the arrangement of atoms around the central atom(s) • What the molecule really looks like electron pairs are not used in the molecular geometry determination

  10. VSEPR Theory • CH4 vs. H2O • CH4- methane • electronic geometry tetrahedral • molecular geometry tetrahedral bond angles = 109.5o

  11. VSEPR Theory • lone pairs of electrons (unshared pairs) require more volume than shared pairs • there is an ordering of repulsions of electrons around central atom • H2O - water • electronic geometry Tetrahedral • molecular geometry bent or angular bond angle = 104.50

  12. VSEPR Theory 1. lone pair to lone pair repulsion is strongest 2. lone pair to bonding pair repulsion is intermediate 3. bonding pair to bonding pair repulsion is weakest • lone pair to lone pair repulsion is why bond angles in water are less than 109.50

  13. Valence Bond Theory • covalent bonds are formed by overlap of atomic orbitals • atomic orbitals on the central atom can mix and exchange their character – hybridization • common hybrids pink flowers, mules, corn, grass

  14. Hybrid orbitals helps describe the same shapes as VSEPR – (hybridization – mixing of orbitals) sp - 2 sp2 - 3 sp3 - 4 sp3d - 5 sp3d2 - 6 s + p orbitals s + p + p orbitals s + p + p + p orbitals  s + p + p + p + d orbitals  s + p + p + p + d + d orbitals  From orbital diagrams Hybridization - CP

  15. sp - 2 sp2 - 3 sp3 - 4 sp3d - 5 sp3d2 - 6 • Linear • Trigonal planar • Tetrahedral • Trigonal bipyramidal • Octahedral Name of orbital – number of pairs on central atom (Regions of high e- density around the central atom) Shape (name) of orbital

  16. Molecular Geometry Terminology • In the next sections the following terminology will be used A = central atom B = bonding pairs around central atom U = lone pairs around central atom For example: AB3U designates that there are 3 bonding pairs and 1 lone pair around the central atom (4 central pairs total)

  17. AB2 Molecules - No Lone Pairs on A - Linear Molecules • Ex. BeCl2, BeBr2,BeI2, HgCl2, CdCl2 ~ all are linear, nonpolar molecules • Dot FormulaElectronic Geometry

  18. AB2 Molecules - No Lone Pairs on A - Linear Molecules • VSEPRPolarity

  19. AB2 Molecules - No Lone Pairs on A - Linear Molecules Molecular Geometry same as electronic geometry symmetrical & nonpolar

  20. AB3 Molecules - No Lone Pairs on A - Trigonal Planar Molecules • Examples: BF3, BCl3 • all are trigonal planar, nonpolar molecules • Dot FormulaElectronic Geometry

  21. AB3 Molecules - No Lone Pairs on A - Trigonal Planar Molecules • VSEPRPolarity

  22. AB3 Molecules - No Lone Pairs on A - Trigonal Planar Molecules Molecular Geometry

  23. AB4 Molecules - No Lone Pairs on A - Tetrahedral Molecules • Ex. CH4, CF4, CCl4, SiH4, SiF4 • all are tetrahedral, nonpolar molecules ~ as long as they have the same 4 substituents • Dot FormulaElectronic Geometry

  24. AB4 Molecules - No Lone Pairs on A - Tetrahedral Molecules • VSEPRPolarity

  25. AB4 Molecules - No Lone Pairs on A - Tetrahedral Molecules Molecular Geometry

  26. AB3U Molecules - One Lone Pair - Pyramidal Molecules • examples NH3,NF3 • first example of lone pairs on the central atom • electronic and molecular geometry are different • all 3 substituents the same but molecule is polar • NH3 andNF3 are pyramidal, polar molecules

  27. AB3U Molecules - One Lone Pair - Pyramidal Molecules • Dot FormulasElectronic Geometry Molecular Geometry

  28. AB3U Molecules - One Lone Pair - Pyramidal Molecules • VSEPRPolarity

  29. AB3U Molecules - One Lone Pair - Pyramidal Molecules • VSEPRPolarity

  30. AB2U2 - Two Lone Pairs - V-Shaped Molecules • Example H2O • water is an angular, bent or V-shaped, polar molecule • Dot FormulaElectronic Geometry Molecular Geometry

  31. AB2U2 - Two Lone Pairs - V-Shaped Molecules • VSEPRPolarity

  32. ABU3 - Three Lone Pairs - Linear Molecules • Hydrogen halides - HF, HCl, HBr, HI • Dot Formula Electronic Geometry

  33. ABU3 - Three Lone Pairs - Linear Molecules • VSEPR Polarity HF is a polar molecule. Molecular Geometry

  34. AB5- No Lone Pairs - TrigonalBipyramidal Molecules • Ex. PF5, AsF5, PCl5, etc. All are trigonalbipyramidal, nonpolar molecules. • Dot FormulaElectronic Geometry

  35. AB5- No Lone Pairs - Trigonal Bipyramidal Molecules • VSEPRPolarity

  36. AB5- No Lone Pairs - Trigonal Bipyramidal Molecules • PolarityMolecular Geometry

  37. AB5- No Lone Pairs - Trigonal Bipyramidal Molecules • Valence Bond (Hybridization)

  38. AB4U- One Lone Pair - Seesaw Molecules • For one lone pair an AB4U molecule results. • AB4U molecules have a seesaw shaped molecular geometry and are polar. SF4is anAB4U molecule lone pair occupies an equatorial position

  39. AB4U- One Lone Pair - Seesaw Molecules • VSEPRMolecular Geometry

  40. AB3U2 - Two Lone Pairs - T-shaped Molecules • For two lone pairs an AB3U2 molecule results • AB3U2 molecules have a T-shaped molecular geometry and are polar IF3is anAB3U2molecule two lone pairs occupy equatorial positions

  41. AB3U2 - Two Lone Pairs - T-shaped Molecules • VSEPR Molecular Geometry

  42. AB2U3 - Three Lone Pairs - Linear Molecules • For three lone pairs an AB2U3 molecule results • AB2U3 molecules have a linear molecular geometry and are nonpolar XeF2is anAB2U3molecule three lone pairs occupy equatorial positions

  43. AB2U3 - Three Lone Pairs - Linear Molecules • VSEPR Molecular Geometry

  44. AB6- No Lone Pairs - Octahedral Molecules • Ex. SF6, SeF6, SCl6, etc. • These are octahedral and nonpolarmolecules if all 6 substituents are the same • Dot FormulaElectronic Geometry Molecular Geometry

  45. AB6- No Lone Pairs - Octahedral Molecules • VSEPRPolarity

  46. AB6- No Lone Pairs - Octahedral Molecules • Valence Bond (Hybridization)

  47. AB5U- One Lone Pair - Square Pyramidal Molecules • For one lone pair an AB5U molecule results. • AB5U molecules have a square pyramidal molecular geometry and are polar. IF5is anAB5U molecule lone pair occupies an axial position

  48. AB5U- One Lone Pair - Square Pyramidal Molecules • VSEPR Molecular Geometry

  49. AB4U2 - Two Lone Pairs - Square Planar Molecules • For two lone pairs an AB4U2 molecule results. • AB4U2 molecules have a square planar molecular geometry and are nonpolar. XeF4is anAB4U2 molecule lone pairs occupy axial positions

  50. AB5U- One Lone Pair - Square Pyramidal Molecules • VSEPRPolarity

More Related