5 konum vekt r
This presentation is the property of its rightful owner.
Sponsored Links
1 / 17

5 KONUM VEKTÖRÜ PowerPoint PPT Presentation


  • 153 Views
  • Uploaded on
  • Presentation posted in: General

5 KONUM VEKTÖRÜ. M.Feridun Dengizek. Uzayda koordinatları bilinen iki nokta arasındaki uzaklık ve yönün tayin edilebilmesi için konum vektörü kullanılır. Eğer sadece bir noktanın koordinatı biliniyorsa konum vektörü ordinat (0,0,0) noktasından bu noktaya çizilen vektör ile ifade edilir.

Download Presentation

5 KONUM VEKTÖRÜ

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


5 konum vekt r

5KONUM VEKTÖRÜ

M.Feridun Dengizek


Konum vekt r

Uzayda koordinatları bilinen iki nokta arasındaki uzaklık ve yönün tayin edilebilmesi için konum vektörü kullanılır.

Eğer sadece bir noktanın koordinatı biliniyorsa konum vektörü ordinat (0,0,0) noktasından bu noktaya çizilen vektör ile ifade edilir.

Konum vektörlerinde yükseklik genellikle z exseninde ifade edilir. (sağ el kuralına uygun)

Konum vektörlerinin birimi metre (m) dir

KONUM VEKTÖRÜ NOTASYONU

Eğer uzaydaki noktalardan biri A(x,y,z) olarak belirlenmiş ise bu noktanın konum vektörü

rA =xA i+yA j+zA k F 5.1

Diğer B noktasının konum vektörü

rB =xB i+yB j+zB k

A noktasından B noktasına çizilecek konum vektörü

rAB=rB-rA

rAB=(xB-xA)i + (yB -yA)j + (zB –zA)k F 5.2

DİKKAT: Her zaman son konumdan bir önceki konum

çıkarılır

Konum Vektörü


Konum vekt r1

İKİ KONUM ARASINDAKİ MESAFENİN BULUNMASI

İki konum arası mesafe dik koordinat eksenlerinde ki bileşen farklarının kareleri toplamının kare kökü kadardır

Konum Vektörü

F 5.3

Konum vektörünün yönü koordinat eksenlerine olan açıları ile belirlenir

F 5.4

F 5.5

F 5.6


Rnek 5 1

ÖRNEK 5.1

0 noktasından A(-4,3,6) noktasına çizilen konum vektörü

  • rA =-4i+3j+6k

    0 noktasından B(8.-5,13) noktasına çizilen konum vektörü

    rB=(8i-5j+13k)m

    A noktasından B noktasına çizilecek konum vektörü

    rAB=rB-rA

    rAB=(rBx-rAx)i + (rBy-rAy)j + (rBz –rAz)k

    rAB=(8-(-4)i + (-5-3)j + (13-6)k

    rAB=12i - 8j +7k

    Konum vektörünün skalar büyüklüğü

Konum vektörünün yönü


Birim vekt r

Birim vektör u kartezyen notasyonu ile yazılmış konum vektörünün skalar büyüklüğüne bölünmesi ile elde edilir.

Birim Vektör

F 5.7

NOT: Vektörel bir değer skalar bir büyüklük ile çarpılır veya bölünürse sonuç yine vektörel bir değer olur.

Vektörel bir değer bir başka vektörel değer ile çarpılır veya bölünürse sonuç skalar bir büyüklük olur.

Vektörel bir değer bir başka vektörel değer ile toplanır veya çıkarılırsa sonuç yine vektörel bir değer olur.


Konumlanm kuvvet vekt r

Konumlanmış Kuvvet vektörü

  • Bir vektörün doğrultusunu belirleyen iki noktanın koordinatları biliniyorsa önce bu doğrultu birim vektör olarak tanımlanır.

  • Sonra kuvvetin skalar büyüklüğü birim vektör ile çarpılarak bu kuvvetin kartezyen koordinatlara göre yazılmış vektörel değeri elde edilmiş olur

    (Not: Buradaki kuvvet vektörünün skalar büyüklüğü daha önceki dersimizde gördüğümüz A noktasında başlayıp B noktasında biten skalar büyüklük değil)

F 5.8

F 5.9

F 5.10


Problem 5 2

Problem 5.2

  • Bir adam 30 metre yüksekteki A noktasına bağlı ipi B noktası doğrultusunda 70 N büyüklüğünde bir kuvvet ile çekmektedir.

  • Bu kuvvetin x,y,z doğrultusundaki bileşenleri ve koordinat eksenlerine göre açılarını bulunuz.


5 konum vekt r

Problem 5.3

  • Bir kapak resimdeki gibi iki halat ile duvara asılı tutulmaktadır.

  • Halatlardan birinde FAB =100N

    diğerinde ise FAC =120N kuvvet etkin oluyorsa

    • Toplam kuvvetin bileşenlerini

    • A noktasına etki eden toplam kuvveti bulunuz.

Önce koordinatları belirleyelim

A(0,0,4)

B(4,0,0)

C(4,2,0)


5 konum vekt r

Problem 5.3 Çözümü

FTx =150N

FTy= 40N

FTz=-150N


Farkli do rultulardak vekt rler n nokta arpimi dot product

FARKLI DOĞRULTULARDAKİ VEKTÖRLERİN NOKTA ÇARPIMI (DOT PRODUCT)

  • Üçüncü dersimizde bir vektörün büyüklük oranında çarpılmasını veya bölünmesini anlatmıştık.

  • Bu işlem sonuç olarak aynı doğrultuda fakat farklı büyüklükte bir vektörün oluşmasını sağlar.

  • Ancak farklı doğrultularda iki vektörün çarpılması için (özellikle üç boyutlu vektörlerde) kartezyen vektör sistemi uygulanmalıdır.

  • Eğer

  • NOKTASAL ÇARPIM KANUNLARI

  • Değişme özelliği  A*B=B*A

  • Çarpma özelliği  a(A*B)=(a*A)*B=A*(a*B)

  • Dağıtım özelliği A*(B+C)= (A*B)+(A*C)

F 5.11

KARTEZYEN VEKTÖR NOKTA ÇARPIM FORMÜLÜ

F 5.12

DİKKAT: Bu çarpım ile skalar büyüklük elde edilir.


Vekt r nokta arpimi b r nc uygulama alani

VEKTÖR NOKTA ÇARPIMI BİRİNCİ UYGULAMA ALANI

  • Vektör çarpımının birinci uygulandığı durum;İki vektörün eksenel bileşenlerinin biliniyor (kartezyen koordinatlarının) olması durumunda aralarındaki açıyı bulmak için kullanılır.

  • Vektörlerin birbiri ile çarpılması sonucunda skalar bir büyüklük elde edilir. Bu büyüklük vektürlerin skalar büyüklükler çarpımına bölünerek aralarındaki açı bulunur.

    ÖRNEK PROBLEM 5.4:

    Yandaki resimde görülen A ve B vektörleri arasındaki açıyı bulunuz

F 5.13

F 5.14


Vekt r nokta arpimi k nc uygulama alani

F 5.8

VEKTÖR NOKTA ÇARPIMI İKİNCİ UYGULAMA ALANI

  • Uzayda birbiri ile çakışan iki vektör bir düzlemi belirler.

  • Eğer bu iki vektörden birisi konumlanmış kuvvet vektörü, diğeri birim vektör ise çarpımdan çıkan sonuç

    • iki vektör arasındaki düzlemde

    • birim vektör doğrultusunda

      Konumlanmış kuvvet vektörünün diğer konum vektörüne iz düşümü (Fp) skalar bir büyüklük olarak elde edilmiş olur.

      ÖRNEK PROBLEM 5.5

      Boyutları 2X6X3 metre olan bir odanın bir köşesinden diğerine bir boru uzanmaktadır.

      Bu boruya B noktasında ve y eksenine paralel ve 300N büyüklüğünde bir kuvvet etki etmektedir.

  • F kuvvetinin boru doğrultusundaki FAB bileşenini

  • FAB ye dik olan FD bileşke kuvvetini

  • FAB kuvvetinin normal kartezyen koordinatlardaki bileşenlerini bulunuz

F 5.15

NOT: Konumlanmış kuvvet vektörünü vektörel değer olarak belirten

ile yukarda F 5.15 de belirtilen bileşke vektörünü skalar değer olarak belirten tanımlar arasındaki farka dikkat ediniz.


Problem 5 5 z m

PROBLEM 5.5 ÇÖZÜMÜ

F kuvveti y eksenine paralel diğer eksenlere dik olduğu için birim vektörü

Önce AB borusu ve etki eden kuvvet doğrultusu için birim vektör bulunur.

Konumlanmış F kuvvet vektörü

F 5.8

F kuvvet vektörünün A-B doğrultusundaki bileşenini bulmak için konumlanmış F kuvvet vektörü AB doğrultusu birim vektörü ile çarpılır

F 5. 15

FAB kuvvetinin normal koordinat sistemindeki bileşenlerini bulmak için FAB kuvveti borunun birim vektörü ile çarpılır.

F 5.8

F kuvvetinin boruya dik bileşeni FD yi bulmak için pisagor teoreminden yararlanılır.


Problem 5 6

PROBLEM 5.6

Tabanı 3x3 metre olan bir odanın y ekseni üzerindeki kenar çizgisinden 1 metre ileride A noktasından bir boru çıkarak x ekseni üzerinde köşeden 3 metre ileride ve z ekseni üzerinde 1 metre aşağıda (bodrumda) B noktasına kadar uzanmaktadır.

Bu boru B noktasına bağlı bir halat ile oda tabanından x ekseni üzerindeki C noktasından 80 N değerinde bir kuvvet ile çekilmektedir.

a. Boru ile halat arasındaki ϴ açısını bulunuz.

b. F kuvvetinin boru üzerindeki iz düşümünü bulunuz.

c. F kuvvetinin boruya dik olan bileşenini bulunuz


Problem 5 6 z m

PROBLEM 5.6 ÇÖZÜMÜ

1. Önce A,B,C noktalarının koordinatları yazılır.

A(x,y,z)  A(0,1,0)

B(x,y,z)  B(2,3,-1)

C(x,y,z)  C(2,0,0)

  • Sonra B den A ya borunun ve

    B den C ye kuvvetin (halatın) konum vektörleri yazılır.

    rA =0i+1j+ 0k

    rB =2i +3j -1k

    rC = 2i + 0j + 0k

     rBA =rA -rB

    • rBA=(0-2)i + (1-3)j + (0-(-1))k

    • rBA=-2i-2j+1k

       rBC =rC -rB

       rBC=(2-2)i + (0-3)j + (0-(-1))k

    • rBC=-0i-3j+1k

3. Konum vektörlerinin skalar büyüklükleri bulunur.


Problem 5 6 z m1

PROBLEM 5.6 ÇÖZÜMÜ

a. Çözümü

Boru ile halat arasındaki açı

rBC=-0i-3j+1k

rBA=-2i-2j+1k


Problem 5 6 z m2

PROBLEM 5.6 ÇÖZÜMÜ

F 5.7

b. ÇÖZÜMÜ

1. Önce boru doğrultusunu ve halat doğrultuları için birim vektörler yazılır.

2. F kuvveti halat doğrultusunda etki ettiği için halat doğrultusu birim vektörü F kuvveti ile çarpılarak konumlanış kuvvet vektörü bulunur

F 5.8

NOT: Burada skalar bir büyüklük, vektörel bir değer ile çarpılarak bir başka vektörel değer elde ediliyor

3. Boruya paralel etki eden FBA kuvvetini bulmak için konumlanmış F vektörü boru doğrultusundaki birim vektör ile çarpılarak FBA skalar bir büyüklük olarak bulunur

F 5.15

NOT: Burada bir vektörel değer bir başka vektörel değer ile çarpılarak skalar bir büyüklük elde ediliyor

4. Boruya dik duruma etki eden değeri bulmak için dik üçgen denkleminden yararlanılabilir


  • Login