1 / 35

시스템별 스펙정리

시스템별 스펙정리. IEEE 802.11a IEEE 802.11n. IEEE 802.11a (1). Rate-dependent parameters. Table 1 Modulation-dependent normalization factor K MOD. IEEE 802.11a (2). Rate-dependent parameters (Cont’). Fig. 1 BPSK, QPSK and 16QAM constellation bit encoding.

jeb
Download Presentation

시스템별 스펙정리

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 시스템별 스펙정리

  2. IEEE 802.11a • IEEE 802.11n

  3. IEEE 802.11a (1) • Rate-dependent parameters Table 1 Modulation-dependent normalization factor KMOD

  4. IEEE 802.11a (2) • Rate-dependent parameters (Cont’) Fig. 1 BPSK, QPSK and 16QAM constellationbit encoding Table 2 BPSK, QPSK and 16QAM encoding table

  5. IEEE 802.11a (3) Fig. 2 64QAM constellationbit encoding

  6. IEEE 802.11a (4) • Convoultional encoder • Rate R=1/2 code with generator polynomials • g0=1338 and g1=1718 • Higher rates are derived from it by employing “puncturing” • R=2/3 or 3/4 • Decoding by Viterbi algorithm is recommended

  7. IEEE 802.11a (5) • Convoultional encoder (Cont’)

  8. IEEE 802.11n (1) • Rate dependent parameters for high throughput modulation and coding schemes Table 1 Symbols used in rate dependent parameters tables Table 2 Rate dependent parameters for mandatory 20MHz

  9. IEEE 802.11n (2) • Convoultional encoder • A single FEC encoder is used when the PHY rate is less than or equal 300Mbps or when LDPCC ECC is used. • Rate = ½ code • Higher rates are derived from it by employing “puncturing” • R=2/3, 3/4 or 5/6

  10. MB-OFDM UWB

  11. MB-OFDM UWB (1) • Data rate-dependent modulation parameter Table 1 Modulation-dependent normalization factor KMOD Table 2 QPSK encoding table Fig. 1 QPSK constellationbit encoding

  12. st st 1 100 S / P 1 16 - point bits 1 : 2 Mapper 50 tone Interleaver IFFT separation nd nd 2 100 S / P 2 16 - point bits 1 : 2 Mapper MB-OFDM UWB (2) • Data rate-dependent modulation parameter (Cont’) Fig. 2 Block diagram of DCM Fig. 3 16 point constellations

  13. Output Data A D D D D D D Output Data B Output Data C MB-OFDM UWB (3) • Convolutional encoder • Rate R=1/3 code with generator polynomials • g0=1338, g1=1658, and g2=1718 • Additional coding rates are derived from the rate R = 1/3 convolutional code by employing “puncturing” • R=1/3, 11/32, ½, 5/8, or 3/4 • Decoding by Viterbi algorithm is recommended Fig. 4 Convolutional encoder: rate R=1/3, constraint length K=7

  14. MB-OFDM UWB (4) • Convolutional encoder (Cont’) Fig. 5 An example of the bit-stealing and bit-insertion procedure (R=11/32)

  15. T-DMB

  16. MCI & SI TDC EWS 2 Ch Multi Ch. D L S T D C MOT IP Tunneling TDC MPEG4 A/V MPEG4 Data Broadcasting Web Site Interactive Service TPEG, DGPS etc JPEG Slide Show Audio PAD NPAD MPEG4 LIVE TV Block Code FIDC Audio Service Data Service K-DMB Service FIC MSC DAB (Eureka-147) T-DMB (1) • 지상파 DMB 개념도

  17. T-DMB (2) • DAB (Eureka-147) 구조도

  18. T-DMB (3) • Convolutional Coding (Mother Code) • Constraint: 7 • Memory: 6 • Code rate: ¼ • Generating polynomial: (133, 171, 145, 133)o • all-zero initial state of the shift register • Output codeword P/S To puncturing procedure

  19. T-DMB (4) • Puncturing Block • Mother code의 일부 bit가 결정된 순서에 따라 전송되지 않음

  20. T-DMB (5) • Puncturing Block (cont’d) • vPI,i = 0 : the corresponding bit shall not be transmitted • vPI,i = 1 : the corresponding bit shall be transmitted

  21. T-DMB (6) • Phase Reference Symbol • Reference for the differential modulation for the next OFDM symbol Mode II

  22. T-DMB (7) • QPSK Symbol Mapper

  23. T-DMB (8) • Differential Modulation • Applied to the QPSK symbols on the same carriers between two consecutive OFDM symbols • 8 possible phase states

  24. Wibro

  25. Wibro (1) • 2.3GHz 휴대인터넷 국내 기술 기준 WiBro IEEE 802.16 +  60km/h로 이동시, 셀 경계에서 최소 하향 512kbps, 상향128kbps 보장  채널대역폭 ≥ 9 MHz  사업자 장비간 로밍 가능  주파수 재사용계수 = 1  이중화 방식 = TDD (송수신 time slot간 동기 일치)

  26. Wibro (2) • Wibro 송수신 블록도

  27. Wibro (3) • Convolution Turbo Code (CTC) • Dual binary circular recursive systematic convolutional (CRSC)

  28. Wibro (4) • CTC interleaver • First permutation • Second permutation

  29. Wibro (5) • Mapping 64QAM QPSK 16QAM

  30. CDMA (IS-95) • WCDMA

  31. CDMA (1) • System parameter • Duplex mode : FDD and TDD • Ddata modulation : QPSK(downlink) BPSK(uplink) • Channel coding : convoultional and turbo codes • Convolutional coding rate = 1/3 or ½ with constraints length 9 • Turbo coding rate = 1/3 • Turbo coding scheme is a parallel concatenated convoultional code (PCCC) with 8 state constituent encoders Fig. 1 Overall eight-state PCCC turbo coding

  32. CDMA (2) • Convolutional Encoder • Forward Link & Rate set 2 Reverse Link ; • R = 1/2, K = 9, g0 = 753(8)=111101011(2) g1 = 561(8)=101110001(2) ‘1’ : Connection ‘0’ : Disconnection ex) Forward link g0 c0 Data bits input Code Symbols Output g1 c1

  33. I Q 위상 0 0 /4 1 0 3/4 -3/4 1 1 -/4 0 1 CDMA (2) • CMDA 순방향채널의 I, Q 데이터와 위상

  34. WCDMA (1) • System parameter • Duplex mode : FDD and TDD • Ddata modulation : QPSK(downlink) BPSK(uplink) • Channel coding : convoultional and turbo codes • Convolutional coding rate = 1/3 or ½ with constraints length 9 • Turbo coding rate = 1/3 • Turbo coding scheme is a parallel concatenated convoultional code (PCCC) with 8 state constituent encoders Fig. 1 Overall eight-state PCCC turbo coding

  35. WCDMA (2) • Modulation • The complex-valued chip sequence generated by the spreading process is QPSK modulated • The pulse shaping is root-raised cosine with roll-off factor 0.22 and is the same for the mobile and base stations Fig. 2 Modulation principle

More Related