The nitrogen cycle
This presentation is the property of its rightful owner.
Sponsored Links
1 / 37

The Nitrogen Cycle PowerPoint PPT Presentation


  • 66 Views
  • Uploaded on
  • Presentation posted in: General

The Nitrogen Cycle. The Nitrogen Cycle. Represents one of the most important nutrient cycles found in terrestrial ecosystems. Model that describes the movement of nitrogen in its many forms between the hydrosphere, lithosphere, atmosphere, and biosphere. The Hydrosphere.

Download Presentation

The Nitrogen Cycle

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


The nitrogen cycle

The Nitrogen Cycle


The nitrogen cycle1

The Nitrogen Cycle

  • Represents one of the most important nutrient cycles found in terrestrial ecosystems. Model that describes the movement of nitrogen in its many forms between the hydrosphere, lithosphere, atmosphere, and biosphere.


The hydrosphere

The Hydrosphere

  • The hydrosphere describes the waters of the earth. Water exists on the earth in various stores, including the: atmosphere, oceans, lakes, rivers, glaciers, snowfields, and groundwater.


Hydrosphere continued

Hydrosphere Continued…

  • Water moves from one store to another by way of: evaporation, condensation, precipitation, deposition, runoff, infiltration, sublimation, transpiration, and groundwater flow.


Continued

continued

  • The form and movement of nitrogen are greatly influenced by components of the hydrologic cycle, which is particularly important for agriculture and the environment.


The lithosphere

The Lithosphere

  • Rigid outer layer of earth; Includes crust and upper part of mantle.

  • Relatively strong layer in contrast to underlying asthenosphere.


Lithosphere continued

The brittle most upper layer of the Earth that is broken up into a number of tectonic plates.

Consists of the heavy oceanic and lighter continental crusts and the upper part of the mantle.

The lithosphere rests on a soft layer called the asthenosphere, over which the plates of the lithosphere glide.

Lithosphere Continued…


The atmosphere

The Atmosphere

  • Life on earth is supported by the atmosphere, solar energy, and our planet's magnetic fields. The atmosphere absorbs the energy from the sun, recycles water and other chemicals, and works with the electrical and magnetic forces to provide a moderate climate.

    The atmosphere

  • The atmosphere also protects us from high-energy radiation and the frigid vacuum of space.


Composition of atmosphere

Composition of Atmosphere

  • The atmosphere is primarily composed of nitrogen (N2, 78%), oxygen (O2, 21%), and argon (Ar, 1%).

  • A number of other very influential components are also present: the water (H2O, 0 - 7%), "greenhouse" gases or ozone (O, 0 - 0.01%), carbon dioxide (CO2, 0.01-0.1%).


Continued1

continued

  • Nitrogen, mostly in the form of ammonium and nitrate, reaches the Earth's surface as a result of atmospheric lightning, precipitation and industrial pollution.


The biosphere

The Biosphere

  • The biosphere is the life zone of the Earth and includes all living organisms, including man, and all organic matter that has not yet decomposed.

  • The biosphere is structured into a hierarchy known as the food chain whereby all life is dependent upon the first tier (i.e. mainly the primary producers that are capable of photosynthesis).


Biosphere part 2

Biosphere Part 2

  • The biosphere can be divided into distinct ecosystems that represent the interactions between a group of organisms forming a trophic pyramid and the environment or habitat in which they live.


Continued2

Continued…

  • Animals consume nitrogen from plants

  • Plants consume nitrogen from the soil

  • Soil gets nitrogen from water or rain that contains nitrogen.


Nitrogen cycle continued

Nitrogen Cycle Continued…

  • All life requires nitrogen-compounds, e.G., Proteins and nucleic acids.

  • Air, which is 79% nitrogen gas (N2), is the major reservoir of nitrogen.

  • But most organisms cannot use nitrogen in this form.


The nitrogen cycle

  • Plants must secure their nitrogen in "fixed" form, i.E., Incorporated in compounds such as: Nitrate ions (NO3-)

  • Ammonia (NH3)

  • Urea (NH2)2CO

  • Animals secure their nitrogen (and all other) compounds from plants (or animals that have fed on plants).


Nitrogen fixation

Three processes are responsible for most of the nitrogen fixation in the biosphere are …

atmospheric fixation by lightning

biological fixation by certain microbes - alone or in a symbiotic relationship with plants

industrial fixation

Nitrogen Fixation


Atmospheric fixation

Atmospheric Fixation

  • The enormous energy of lightning breaks nitrogen molecules and enables their atoms to combine with oxygen in the air forming nitrogen oxides.

  • These dissolve in rain, forming nitrates, that are carried to the earth.

  • Atmospheric nitrogen fixation probably contributes some 5-8% of the total nitrogen fixed.


Biological fixation

Biological Fixation

  • The ability to fix nitrogen is found only in certain bacteria.

  • Some live in a symbiotic relationship with plants of the legume family (e.g., soybeans, alfalfa).

  • Some establish symbiotic relationships with plants other than legumes (e.g., alders).


Continued3

Continued…

  • Some nitrogen-fixing bacteria live free in the soil.

  • Nitrogen-fixing cyanobacteria are essential to maintaining the fertility of semi-aquatic environments like rice paddies.


Industrial fixation

Industrial Fixation

  • Under great pressure, at a temperature of 600°C, and with the use of a catalyst, atmospheric nitrogen and hydrogen (usually derived from natural gas or petroleum) can be combined to form ammonia (NH3).

  • Ammonia can be used directly as fertilizer, but most of its is further processed to urea and ammonium nitrate (NH4NO3).


Decay

Decay

  • Proteins made by plants enter and pass through food webs just as carbohydrates do.

  • At each trophic level, their metabolism produces organic nitrogen compounds that return to the environment, chiefly in excretions.


Continued4

Continued…

  • The final beneficiaries of these materials are microorganisms of decay. They break down the molecules in excretions and dead organisms into ammonia.


Nitrification

Ammonia can be taken up directly by plants - usually through their roots.

Most of the ammonia produced by decay is converted into nitrates. This is accomplished in two steps:

Bacteria of the genus Nitrosomonas oxidize NH3 to nitrites(NO2-).

Bacteria of the genus Nitrobacter oxidize the nitrites to nitrates (NO3-).

Nitrification


Continued5

Continued…

  • These two groups or autotrophic bacteria are called nitrifying bacteria. Through their activities (which supply them with all their energy needs), nitrogen is made available to the roots of plants.


Assimilation

Assimilation

  • Plant roots absorb inorganic ammonia, ammonium ions, and nitrate ions. Formed by nitrification and nitrogen fixation.

  • Ions are used to make nitrogen containing organic molecules such as:

    • DNA

    • Amino Acids

    • Proteins


Dentrification

Dentrification

  • The three processes above remove nitrogen from the atmosphere and pass it through ecosystems.

  • Denitrification reduces nitrates to nitrogen gas, thus replenishing the atmosphere.

  • Bacteria are the agents. They live deep in soil and in aquatic sediments where conditions are anaerobic. They use nitrates as an alternative to oxygen for the final electron acceptor in their respiration.


Human influence

Human Influence

  • German chemist of WWII, Fritz Haber developed a chemical process in which nitrogen and hydrogen gas combine to form gaseous ammonia.

  • Coupled with irrigation, this input of nitrogen into the soil revolutionized agriculture by increasing crop yields


Ways humans intervene 1

Ways Humans Intervene… #1

  • We emit a large amount of nitrogen into the atmosphere when we burn fuel


The nitrogen cycle

… #2

  • We emit heat-trapping nitrous oxide gas into the atmosphere through anaerobic bacteria on livestock wastes and commercial inorganic fertilizers applied to the soil

  • Emission of this gas rise and account for few greenhouse gases that can cause global warming

  • When it reaches the stratosphere, it depletes some of the ozone layer


The nitrogen cycle

…3

  • We remove nitrogen from the earth's crust when we mine nitrogen-containing materials for fertilizers

  • Deplete nitrogen from soil by harvesting nitrogen-rich crops

  • Leach water-soluble nitrate ions from soil by irrigation


The nitrogen cycle

…4

  • Remove nitrogen from soil when we burn grasslands and clear forests before planting crops


The nitrogen cycle

…5

  • Add excess nitrogen compounds to aqautic systems in agricultural runoff, sewage, and deposition of nitrogen compounds from the atmosphere

  • Stimulates excess growth of algae and other aquatic plants

  • Breakdown of dead algae by aerobic decomposers deplete water of dissolved oxygen and disrupt aquatic systems and reduce aquatic biodiversity


The nitrogen cycle

…6

  • Add excess nitrogen compounds to terrestrial ecosystems through atmospheric deposition…


Atmospheric deposition

Atmospheric Deposition

  • The movement of reactive nitrogen compounds, such as nitric acid, nitrogen dioxide, from the atmosphere onto plant leaves and other surfaces


6 continued

…6 (continued)

  • The nitrogen becomes available for plant and microbial growth, and can lead to weeds which can better use nitrogen for growth, outgrowing/eliminating other plants that cant use nitrogen as well.

  • THUS: our excessive inputs of nitrogen into the atmosphere can reduce terrestrial biodiversity


Works cited

http://liftoff.msfc.nasa.gov/academy/space/atmosphere.html

http://www.geog.ouc.bc.ca/physgeog/contents/images/lithosphere.gif

http://www.oilandgas.org.uk/issues/images/z0002409.gif

http://www.webref.org/geology/1/lithosphere.htm

http://www.bartleby.com/65/li/lithosph.html

http://www.elmhurst.edu/~chm/onlcourse/chm110/outlines/nitrogencycle.html

http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/N/NitrogenCycle.html

Works Cited


Continued6

http://web.geology.ufl.edu/Biosphere.html

http://www.cas.muohio.edu/~mbi-ws/biogeochemicalcycles/Nitrogen/nitrogen.htm#Ass

http://www.marietta.edu/~biol/102/ecosystem.html#TheNitrogenCycle12

Living in the Environment/Eleventh Edition/G Tyler Miller, Jr.

Continued…


  • Login