1 / 117

黃暉程 蔡昇翰 熊翌成 游琇婷

Ch11 Biomaterials. 黃暉程 蔡昇翰 熊翌成 游琇婷. outline. Definition of Biomaterial Classes of Materials Crystal Structure Mechanical Behavior Wear Resistance Calcium-phosphate Bioactive Glasses . Definition of Biomaterial Classes of Materials. P86994191 游琇婷. Definition of Biomaterial.

jason
Download Presentation

黃暉程 蔡昇翰 熊翌成 游琇婷

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ch11 Biomaterials • 黃暉程 蔡昇翰 熊翌成 游琇婷

  2. outline Definition of Biomaterial Classes of Materials Crystal Structure Mechanical Behavior Wear Resistance Calcium-phosphate Bioactive Glasses

  3. Definition of BiomaterialClasses of Materials P86994191 游琇婷

  4. Definition of Biomaterial A biomaterial is a nonviable material used in medical device, so its intended to interact with a biological systems. Biomaterials are manufactured substitutes for natural tissues. They are used in implants or catheters.artificial organs. drug delivery. wound dressing.

  5. Classes of Materials Biomaterials can be convenientlygrouped into three classes: metals, polymers, and ceramics. Composites, representing another group of materials, consist of combinations of two or more metals, polymers, or ceramics.

  6. Metals metallic bond As the electrons can move easily in metals, making metals easily deformable. The independent electrons in the metallic bonds can quickly transfer electric charge and thermal energy.

  7. it is often desirable to coat metallic implants with a bioactive ceramic film in order to improve implant fixation the difference in the thermal expansion coefficient between metals and ceramics results in interfacial shear stresses that can create microcracksat the interface during cooling subsequent to plasma-spraying a calcium phosphate coating onto a metallic implant. http://www.gordonengland.co.uk/img/ps1.gif http://www.azom.com/work/amvxiMoDGM6y1N7EBNXZ_files/image003.jpg

  8. As the mechanical properties (and also the chemical and physical properties) of metals can be improved by alloying, most metals used in orthopedic surgery are alloyed. Obvious examples are the alloys based either on titanium or on cobalt.

  9. Ceramics • Ceramics are refractory polycrystalline compounds • Usually inorganic • Highly inert • Hard and brittle • High compressive strength • Generally good electric and thermal insulators • Good aesthetic appearance • Applications: • orthopaedic implants • dental applications http://www.azonano.com/images/Article_Images/ImageForArticle_2702(2).jpg

  10. Types of Bioceramics Synthetic HA Bone HA

  11. Polymers covalent bond These large molecules contain many repeating units, from which comes the word polymers. The polymeric molecular arrangements can be linear, branched, or cross-linked

  12. Common Polymer Biomaterials artificial trachea catheters

  13. Polymers In Specific Applications

  14. Composites particle platelet fiber Composite materials are solids that contain two or more distinct constituent materials or phases Most composite biomaterials have been developed to enhance mechanical and biocompatibility behavior. The shape of the phases in a composite material is classified into threecategories.

  15. Some applications of composites in biomaterialapplications are: • (1) dental filling composites • (2) reinforced methyl methacrylatebone cement • (3) orthopedic implants with porous surfaces. http://seis.irsm.cas.cz/images/IMG/Bull/Fig_6.jpg

  16. --Crystal Structure(晶體結構)--Mechanical Behavior(機械性質) P86981211 熊翌成

  17. Crystal Structure(晶體結構) • 單位晶胞 (unit cells) • 結晶結構的最小重複實體 • 可代表晶體結構的對稱性晶胞 • 晶體結構的基本單元

  18. Crystal Structure – 2D(晶體結構)

  19. Common Crystal Structure • Body-centered cubic (BCC) 體心立方結晶構造 • Face-centered cubic (FCC) 面心立方結晶構造 • Hexagonal close-packed (HCP) 六方最密堆積結晶構造

  20. 一、體心立方單位晶格Body-centered cubic (BCC) 鄰近原子數目(配位數)=8 每個立方格子含有2個原子 原子填充率=0.68

  21. 一、體心立方單位晶格Body-centered cubic (BCC) 晶體結構中另外兩個重要的特性是配位數(coordination number)和原子填充率(atomic packing factor, APF)。對金屬而言,每一原子具有相同的最鄰近或接觸原子的數目,就是配位數的定義。 另外APF是單位晶胞中固態球體的體積分率,假設單位晶胞具有原子硬球模型時,則APF的定義為單位晶胞中原子的體積除已全部單位晶胞的體積所得之因子。

  22. 左圖中,a 為晶胞立方格子單位長度,R為原子半徑,二者關係可用下列式子表示,穿過體心的對角線為鐵原子排列最緊密的方向。 考量原子填入晶胞所占有的空間,可將原子填充率以下列式子表示: 因此,體心立方晶體的 在後面不同的晶體結構比較,我們會發現晶體的原子填充率與其最鄰近的原子數目有關。最鄰近原子數目為8的體心立方結構,不是原子最緊密堆積的結構。

  23. 二、面心立方單位晶格Face-centered cubic (FCC) 鄰近原子數目(配位數)=12 每個立方格子含有4個原子 原子填充率=0.74

  24. 由左圖可見,通過面心的格子對角線為緊密排列方向。若晶胞立方格子單位長度為a,原子半徑為R,其間關係可以下式表示:由左圖可見,通過面心的格子對角線為緊密排列方向。若晶胞立方格子單位長度為a,原子半徑為R,其間關係可以下式表示: 面心立方晶體的原子填充率(0.74)較體心立方晶體者(0.68)為高。事實上,具有最鄰近原子數為12的金屬晶體,其原子排列為空間最緊密的一種堆積結構。另一種最緊密堆積結構,則為六方最密堆積結構。

  25. 三、六方緊密堆積單位晶格Hexagonal close-packed (HCP) 不是所有金屬的單位晶胞都具有立方對稱,第三種常見的金屬晶體結構是具有六方立體晶格的單位晶胞,稱之為六方緊密堆積(hexagonal close-packed 簡稱HCP)。在每一單位晶胞中包含有6個原子,計算方式為每個單位晶包含有12個頂面和底面角落原子,其中每一個原子的六分之一包含在這個單位晶胞中,另外晶胞亦包含2個中心平面原子的每一個的二分之一和所有3 個中間平面的內部原子。

  26. 六方緊密堆積單位晶格Hexagonal close-packed (HCP) • 鄰近原子數目(配位數)=12 • 每個立方格子含有6個原子 • 原子填充率=0.74

  27. 晶體系統 (Crystal Systems) • 單位晶胞各邊以x、y和z座標軸表示,各邊邊長以a、b、c表示,邊與邊之間的夾角以α、β和r表示。 • 此六個參數為三個邊長a、b和c,及三個軸的夾角α、β和γ,這些亦稱為晶格參數(lattice parameters)。 利用x, y, z座標系統的六個參數定義單位晶胞:

  28. 七大晶體系統

  29. Metals (金屬材料) All metals, most ceramics, and some polymers crystallize when they solidify. A crystalline material is characterized by long-range order and an infinitely repeating unit cell of atoms/ions.

  30. Ceramics(陶瓷材料) Hydroxyapatite (HA), a bone bioactive ceramic. HA structure is considerably complex, as a result of which, displacement of atoms within the lattice is difficult. Thus the structure is resistant to deformation and, when overloaded, fractures rather than deforming permanently.

  31. Polymers(聚合物) As the extent of polymerization increases and the molecular chains become longer, the relative mobility of the chains in the structure decreases. As a result, alignment of the chains and formation of long-range order is difficult.

  32. Polymers(聚合物) Factors affecting the strength of polymers further include chemical composition, side groups, cross-linking, copolymerization, and blending.

  33. Mechanical Properties(機械性質) Mechanical properties including elasticityand strengthare important properties to consider in the selection of a material for a specific implant design.

  34. Mechanical PropertiesStrength

  35. 破壞之基礎 簡單破壞是指一個物體在低溫下(相對於熔點),受到施加靜態應力(即應力為常數或隨時間緩慢改變),分裂為兩個或更多的碎片。 對工程材料而言,依據材料發生塑性變形的能力將其分類,有兩種可能的破壞模式:延性(ductile)和脆性(brittle)。延性材料在破壞之前通常出現高能量吸收的大量塑性變形,而脆性材料的破壞幾乎沒有塑性變形,只有低能量吸收。

  36. 延性破壞 破斷面上大量的塑性變形,就是延性破壞的證據。受到拉伸時,高度延性金屬破斷面會頸縮至一點。 延性材料的裂紋是穩定的(沒有增加外在應力即不會生長),由於不是突然及災難性的破壞,所以這種破壞模式較能接受。

  37. 脆性破壞 脆性破壞藉著快速的裂紋生長,在幾乎沒有變形的情況下就發生了。裂紋的運動方向幾乎是垂直於施加的拉伸應力,產生出一個相當平坦的破斷面。

  38. (a) 鋁的延性破壞,(b) 中碳鋼的脆性破斷。

  39. 對多數脆性結晶材料而言,裂紋成長相當於沿著特定結晶平面,相繼重覆地打斷原子鍵,這個過程稱為劈裂(cleavage),這種形式的破壞稱為穿晶破壞(transgranular;或稱 transcrystalline),因為破壞裂縫穿越晶粒而成。 (a) 穿晶破壞時,裂紋沿晶粒內部前進的剖面圖示。 (b) 延性鑄鐵的掃描電子破斷面照片顯示穿晶破斷面。

  40. 有些合金的裂紋沿晶界前進;此形式的破壞稱之為沿晶破壞(intergranular)。有些合金的裂紋沿晶界前進;此形式的破壞稱之為沿晶破壞(intergranular)。 (a) 沿晶破壞時,裂紋沿晶界前進的剖面圖示。 (b) 掃描電子破斷面照片顯示一沿晶破斷面。放大 50 倍。

  41. 破壞力學原理 應力集中 Stress Concentration 材料在正常情況下,其表面或內部總是存在非常微小的瑕疵或裂縫,這些瑕疵對於破壞強度是一種損傷,因為施加應力會放大或集中於裂紋的尖端,應力放大的量取決於裂紋的方向和幾何形狀。這些瑕疵由於它們所在之處有放大應力的能力,因此有時稱為應力集中源(stress raiser)。

  42. 陶瓷的脆性破壞 在室溫下,結晶和非結晶陶瓷在受到拉伸負荷時,幾乎在塑性變形發生之前就已破壞。 當應力基本上是靜態的,陶瓷材料的破壞是藉著裂紋的緩慢前進來發生的,這種現象稱為靜力疲勞(static fatigue)或是延遲破壞(delayed fracture)。 同一種脆性陶瓷材料做的不同試片所測得的破壞強度值常有所變動。對於壓應力而言,就沒有因為瑕疵造成的應力放大現象,因此,脆性陶瓷的抗壓強度比抗拉強度高得多(相差 10 倍的等級),所以常被用來承受壓負荷。

More Related