1 / 29

CS 7810 Lecture 22

CS 7810 Lecture 22. Processor Case Studies, The Microarchitecture of the Pentium 4 Processor G. Hinton et al. Intel Technology Journal Q1, 2001. Clock Frequencies. Aggressive clocks => little work per pipeline stage => deep pipelines => low IPC, large buffers, high

jarah
Download Presentation

CS 7810 Lecture 22

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CS 7810 Lecture 22 Processor Case Studies, The Microarchitecture of the Pentium 4 Processor G. Hinton et al. Intel Technology Journal Q1, 2001

  2. Clock Frequencies • Aggressive clocks => little work per pipeline stage • => deep pipelines => low IPC, large buffers, high • power, high complexity, low efficiency • 50% increase in clock speed => 30% increase in • performance Mispredict latency = 10 cyc Mispredict latency = 20 cyc

  3. Deep Pipelines

  4. Variable Clocks • The fastest clock is defined as the time for an • ALU operation and bypass (twice the main • processor clock) • Different parts of the chip operate at slower • clocks to simplify the pipeline design (e.g. RAMs)

  5. Microarchitecture Overview

  6. Front End • ITLB, RAS, decoder • Trace Cache: contains 12Kmops (~8K-16KB • I-cache), saves 3 pipe stages, reduces power • Front-end BTB accessed on a trace cache miss • and smaller Trace-cache BTB to detect next • trace line – no details on branch pred algo • Microcode ROM: implements mop translation for • complex instructions

  7. Execution Engine • Allocator: resource (regs, IQ, LSQ, ROB) manager • Rename: 8 logical regs are renamed to 128 phys • regs; ROB (126 entries) only stores pointers • (Pentium 4) and not the actual reg values (unlike • P6) – simpler design, less power • Two queues (memory and non-memory) and • multiple schedulers (select logic) – can issue six • instrs/cycle

  8. Schedulers • 3GHz clock speed = time for a 16-bit add and bypass

  9. NetBurst • 3GHz ALU clock = time for a 16-bit add and bypass • to itself (area is kept to a minimum) • Used by 60-70% of all mops in integer programs • Staggered addition – speeds up execution of • dependent instrs – an add takes three cycles • Early computation of lower 16 bits => early • initiation of cache access

  10. Detailed Microarchitecture

  11. Data Cache • 4-way 8KB cache; 2-cycle load-use latency for • integer instrs and 6-cycle latency for fp instrs • Distance between load scheduler and execution • is longer than load latency • Speculative issue of load-dependent instrs and • selective replay • Store buffer (24 entries) to forward results to loads • (48 entries) – no details on load issue algo

  12. Cache Hierarchy • 256KB 8-way L2; 7-cycle latency; new operation • every two cycles • Stream prefetcher from memory to L2 – stays • 256 bytes ahead • 3.2GB/s system bus: 64-bit wide bus at 400MHz

  13. Performance Results

  14. Quick Facts • November 2000: Willamette, 0.18m, Al interconnect, • 42M transistors, 217mm2, 55W, 1.5GHz • February 2004: Prescott, 0.09m, Cu interconnect, • 125M transistors, 112mm2, 103W, 3.4GHz

  15. Improvements • Willamette (2000)  Prescott (2004) • L1 data cache 8KB  16KB • L2 cache 256KB  1MB • Pipeline stages 20  31 • Frequency 1.5GHz  3.4GHz • Technology 0.18m 0.09m

  16. Pentium M • Based on the P6 microarchitecture • Lower design complexity (some inefficiencies • persist, such as copying register values from ROB • to architected register file) • Improves on P4 branch predictor

  17. PM Changes to P6, cont. • Intel has not released the exact length of the pipeline. • Known to be somewhere between the P4 (20 stage)and the P3 (10 stage). Rumored to be 12 stages. • Trades off slightly lower clock frequencies (than P4) for better performance per clock, less branch prediction penalties, …

  18. Banias • 1st version • 77 million transistors, 23 million more than P4 • 1 MB on die Level 2 cache • 400 MHz FSB (quad pumped 100 MHZ) • 130 nm process • Frequencies between 1.3 – 1.7 GHz • Thermal Design Point of 24.5 watts http://www.intel.com/pressroom/archive/photos/centrino.htm

  19. Dothan • Launched May 10, 2004 • 140 million transistors • 2 MB Level 2 cache • 400 or 533 MHz FSB • Frequencies between 1.0 to 2.26 GHz • Thermal Design Point of 21(400 MHz FSB) to 27 watts http://www.intel.com/pressroom/archive/photos/centrino.htm

  20. Branch Prediction • Longer pipelines mean higher penalties for mispredicted branches • Improvements result in added performance and hence less energy spent per instruction retired

  21. Branch Prediction in Pentium M • Enhanced version of Pentium 4 predictor • Two branch predictors added that run in tandem with P4 predictor: • Loop detector • Indirect branch detector • 20% lower misprediction rate than PIII resulting in up to 7% gain in real performance

  22. Branch Prediction Based on diagram found here: http://www.cpuid.org/reviews/PentiumM/index.php

  23. Loop Detector • A predictor that always branches in a loop will always incorrectly branch on the last iteration • Detector analyzes branches for loop behavior • Benefits a wide variety of program types http://www.intel.com/technology/itj/2003/volume07issue02/art03_pentiumm/p05_branch.htm

  24. Indirect Branch Predictor • Picks targets based on global flow control history • Benefits programs compiled to branch to calculated addresses http://www.intel.com/technology/itj/2003/volume07issue02/art03_pentiumm/p05_branch.htm

  25. Benchmark

  26. Battery Life

  27. UltraSPARC IV • CMP with 2 UltraSPARC IIIs – speedups of 1.6 • and 1.14 for swim and lucas (static parallelization) • UltraSPARC III : 4-wide, 16 queue entries, 14 • pipeline stages • 4KB branch predictor – 95% accuracy, 7-cycle • penalty • 2KB prefetch buffer between L1 and L2

  28. Alpha 21364 • Tournament predictor – local and global; 36Kb • Issue queue (20-Int, 15-FP), 4-wide Int, 2-wide FP • Two clusters, each with 2 FUs and a copy of the • 80-entry register file

  29. Title • Bullet

More Related