1 / 48

ITEC 3220M Using and Designing Database Systems

ITEC 3220M Using and Designing Database Systems. Instructor: Prof. Z.Yang Course Website: http://people.math.yorku.ca/~zyang/itec3220m.htm Office: Tel 3049. Chapter 3. The Relational Database Model (Cont’d). Relational algebra

jalila
Download Presentation

ITEC 3220M Using and Designing Database Systems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ITEC 3220MUsing and Designing Database Systems Instructor: Prof. Z.Yang Course Website: http://people.math.yorku.ca/~zyang/itec3220m.htm Office: Tel 3049

  2. Chapter 3 The Relational Database Model (Cont’d)

  3. Relational algebra Defines theoretical way of manipulating table contents using relational operators: SELECT PROJECT JOIN INTERSECT Use of relational algebra operators on existing tables (relations) produces new relations UNION DIFFERENCE PRODUCT DIVIDE Relational Database Operators

  4. Relational Algebra Operators (continued) • Union: • Combines all rows from two tables, excluding duplicate rows • Tables must have the same attribute characteristics • Intersect: • Yields only the rows that appear in both tables

  5. Union

  6. Intersect

  7. Relational Algebra Operators (continued) • Difference • Yields all rows in one table not found in the other table—that is, it subtracts one table from the other

  8. Venn Diagrams for Traditional Set Operators Venn Diagram: Union Intersection Differences

  9. Product • Yields all possible pairs of rows from two tables

  10. Relational Algebra Operators (continued) • Select • Yields values for all rows found in a table • Can be used to list either all row values or it can yield only those row values that match a specified criterion • Yields a horizontal subset of a table • Project • Yields all values for selected attributes • Yields a vertical subset of a table

  11. Select

  12. Project

  13. Relational Algebra Operators (continued) • Join • Allows us to combine information from two or more tables • Real power behind the relational database, allowing the use of independent tables linked by common attributes

  14. Natural Join Process • Links tables by selecting rows with common values in common attribute(s) • Three-stage process • Product creates one table • Select yields appropriate rows • Project yields single copy of each attribute to eliminate duplicate columns

  15. Natural Join (continued) • Final outcome yields table that • Does not include unmatched pairs • Provides only copies of matches • If no match is made between the table rows, • the new table does not include the unmatched row

  16. Other Joins • EquiJOIN • Links tables based on equality condition that compares specified columns of tables • Join criteria must be explicitly defined • Theta JOIN • EquiJOIN that compares specified columns of each table using operator other than equality one • Outer JOIN • Matched pairs are retained • Unmatched values in other tables left null • Right and left

  17. Divide Requires use of single-column table and two-column table

  18. Summary of Meanings of the Relational Algebra Operators • Select: Extracts rows that satisfy a specified condition • Project: Extracts specified columns • Product: Builds a table from two tables consisting of all possible combinations of rows, one from each of the two tables • Union: Builds a table from all rows appearing in either of two tables • Intersect: Builds a table consisting of all rows appearing in both of two specified tables

  19. Summary of Meanings of the Relational Algebra Operators (Cont’d) • Join: Extracts rows from a product of two tables such that two input rows contributing to any output row satisfy some specified condition • Outer Join: Extracts the matching rows of two tables and the unmatched rows from both tables • Divide: Builds a table consisting of all values of one column of a binary table that match all values in a unary table

  20. Chapter 4 Entity Relationship (E-R) Modeling

  21. In this chapter, you will learn: • How relationships between entities are defined and refined, and how such relationships are incorporated into the database design process • Key terms: cardinality, connectivity, optional, mandatory, strong relationship, weak relationship, supertype, subtype, etc. • How to develop an E-R diagram

  22. The Entity Relationship (ER) Model • ER model forms the basis of an ER diagram • ERD represents the conceptual database as viewed by end user • ERDs depict the ER model’s three main components: • Entities • Attributes • Relationships

  23. Entities • Refers to the entity set and not to a single entity occurrence • Corresponds to a table and not to a row in the relational environment • In both the Chen and Crow’s Foot models, an entity is represented by a rectangle containing the entity’s name • Entity name, a noun, is usually written in capital letters

  24. Attributes • Characteristics of entities • Domain is set of possible values • Primary keys underlined

  25. EMPLOYEE EMPLOYEE _NAME ADDRESS EMPLOYEE _ID EMPLOYEE _NAME ADDRESS DATE-EMPLOYED DATE-EMPLOYED EMPLOYEE _ID EMPLOYEE Examples • EMPLOYEE (EMPLOYEE _ID, EMPLOYEE _NAME, ADDRESS, DATE-EMPLOYED)

  26. Simple Cannot be subdivided Age, sex, marital status Composite Can be subdivided into additional attributes Address into street, city, zip Single-valued Can have only a single value Person has one social security number Multi-valued Can have many values Person may have several college degrees In the Chen E-R model, the multivalued attributes are shown by a double line connecting the attributes to the entity Derived Can be derived with algorithm Age can be derived from date of birth Versus stored attribute Attributes (Cont’d)

  27. Address Street_Address Post_Code State City Attributes (Cont’d) An attribute broken into component parts

  28. Address Employee_Name Employee_ID Skills Years_Employed EMPLOYEE Date_Employed Attributes (Cont’d) Entity with a multivalued attribute (Skill) and derived attribute (Years_Employed)

  29. How to Deal with Multivalued Attributes • With the original entity, create several new attributes, one for each of the original multivalued attribute’s components. • Create a new entity composed of the original multivalued attribute’s components.

  30. An Example Mod_code Car_Year Car_Vin Car_Color CAR

  31. Relationships • Association between entities • Connected entities are called participants • Operate in both directions • Connectivity describes relationship classification • 1:1, 1:M, M:N • Cardinality • Expresses number of entity occurrences associated with one occurrence of related entity

  32. ERD Symbols • Rectangles represent entities • Diamonds represent the relationship(s) between the entities • “1” side of relationship • Number 1 in Chen Model • Bar crossing line in Crow’s Feet Model • “Many” relationships • Letter “M” and “N” in Chen Model • Three pronged “Crow’s foot” in Crow’s Feet Model

  33. Connectivity and Cardinality in an ERD

  34. Relationship Strength • Existence dependence • Entity’s existence depends on existence of related entities • Existence-independent entities can exist apart from related entities • EMPLOYEE claims DEPENDENT • Weak (non-identifying) • One entity is existence-independent on another • PK of related entity doesn’t contain PK component of parent entity • Strong (identifying) • One entity is existence-dependent on another • PK of related entity contains PK component of parent entity

  35. Weak Entity • Existence-dependent on another entity • Has primary key that is partially or totally derived from parent entity

  36. Relationship Participation • Optional • Entity occurrence does not require a corresponding occurrence in related entity • Shown by drawing a small circle on side of optional entity on ERD • Mandatory • Entity occurrence requires corresponding occurrence in related entity • If no optionality symbol is shown on ERD, it is mandatory

  37. Relationship Degree • Indicates number of associated entities • Unary • Single entity • Exists between occurrences of same entity set • Binary • Two entities associated • Most common • To simplify the conceptual design, most higher-order relationships are decomposed into appropriate equivalent relationships when possible • Ternary • Three entities associated

  38. Three Types of Relationships

  39. 1 1 1 M PERSON EMPLOYEE is married to manages Recursive Relationship • Definition: A relationship can exist between occurrences of the same entity set.

  40. Composite Entities • Also known as bridge entities • Composed of the primary keys of each of the entities to be connected • May also contain additional attributes that play no role in the connective process

  41. A Composite Entity in an ERD

  42. Example M:N Relationship

  43. Converting M:N Relationship to Two 1:M Relationships (Cont’d)

  44. STORE ORDER PRODUCT employs DEPENDENT EMPLOYEE claims An Example 1 W X Y Z (a,b) (e,f) (g,h) (i,j) (k,l) (c,d) M 1 M (o,p) (m,n)

  45. Comparison of E-R Modeling Symbols

  46. Developing an E-R Diagram • Iterative Process • Step1: General narrative of organizational operations developed • Step2: Basic E-R Model graphically depicted and reviewed • Step3: Modifications made to incorporate newly discovered E-R components • Repeat process until designers and users agree E-R Diagram complete

  47. Example • Create an ERD using the following business rules: • A company operates four departments • Each department employs employees • Each of the employees may or may not have one or more dependents • Each employee may or may not have an employment history

  48. Exercise Design an E-R diagram for a real estate firm that lists property of sale. • The firm has a number of sales offices in several states. • Each sales office is assigned one or more employees. Attributes of employees include ID and name. An employee must be assigned to only one sales office. • For each sales office, there is always one employee assigned to manage that office. An employee may manage only the sales office to which he is assigned. • The firm lists property for sale. Attributes of property include ID and location. Components of location include address, city, state, and Zip_code. • Each unit of property must be listed with one of the sales offices. A sales office may have any number of properties listed, or may have no properties listed. • Each unit of property has one or more owners. An owner may own one or more units of property. An attribute of the relationship between property and owner is Percent_Owned.

More Related