Results and discussions 1 6
This presentation is the property of its rightful owner.
Sponsored Links
1 / 12

Results and Discussions (1/6) PowerPoint PPT Presentation


  • 84 Views
  • Uploaded on
  • Presentation posted in: General

Results and Discussions (1/6). Table 1. Average theta EEG on good and poor sleepers. Results and Discussions (2/6 ) . Mean theta amplitude for each task exhibited a lower value on the good sleepers as compared to the poor sleepers

Download Presentation

Results and Discussions (1/6)

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Results and discussions 1 6

Results and Discussions (1/6)

Table 1. Average theta EEG on good and poor sleepers


Results and discussions 2 6

Results and Discussions (2/6)

  • Mean theta amplitude for each task exhibited a lower value on the good sleepers as compared to the poor sleepers

  • First and last tasks good sleepers tend to have a suppressed theta after the experiment

    • Pre- vs. post- (14.72%)

  • Smaller change for poor sleepers

    • Pre- vs. post- (4.32%)


Results and discussions 3 6

Results and Discussions (3/6)

Fig. 3. Mean theta μV values for good versus poor sleepers on six tasks


Results and discussions 4 6

Results and Discussions (4/6)

  • Lowest theta amplitude at third test

  • Highest theta while listening to clip

  • Poor sleepers reflect higher mean theta amplitude

  • Poor sleepers have harder time to focus during auditory test


Results and discussions 5 6

Results and Discussions (5/6)

Auditory stimulation vs. Visual stimulation

Poor sleeperGood sleeper

13.54% vs. 3.19%


Results and discussions 6 6

Results and Discussions (6/6)

  • Poor sleepers demonstrated:

    • Almost 25% difference in peak amplitude in comparison to its good sleeper counterpart

    • 23.51% increasein amplitude after task 3 (eyes close)

    • 13.54% decrease in task 5 (visual stimulation) as compared to task 4 (audio stimulation).

Fig. 4. Analysis of the audio and visual biofeedback for good and poor sleepers.


Conclusions

Conclusions

  • The current research confirms that there can be significant differences between good and poor sleepers using the prefrontal EEG by measuring and studying their EEG

  • Prefrontal EEG can be conveniently used for future measurements of attention, poor sleep, or fatigue research

  • Significant differences can easily be detected after audio stimulation


Results and discussions 1 6

Acknowledgments: We would like to thank National Science Council, for providing financial support for this project through NSC99-2221-E-218-012.


References

References

  • S. Li, X. Jin, S. Wu, F. Jiang, C. Yan, and X. Shen, Sleep. 30, 3, 361, (2007)

  • C.-K. Yang, J. Kim, S. R. Patel, and J.-H. Lee, Pediatrics. 115, Supp 1, 250, (2005)

  • A.G. Harvey, Behav Res Ther. 40, 869(2002)

  • J. C.Ong, N. B. Carde, J. J. Gross, and R. Manber, J. Sleep Res. In press, (2011)

  • Y. Shigihara and M. Tanaka, Behavioral Medicine, 36, 109.(2010)

  • S. Otmani, T. Pebayle, J. Roge, and A. Muzet, Physiology and Behavior, 84, 715, (2005)

  • C. Christodoulou, “Chapter 2: The assessment and measurement of fatigue,” Fatigue as a Window to the Brain, The MIT Press, London, England, (2005)

  • Y. Dong, Z. Hu, K. Uchimura, and N. Murayama, IEEE Trans on Intelligent Transportations Systems, 12, 596, (2011)

  • M. Thompson, The Neurofeedback Book: An Introduction to Basic Concepts in Applied Psychophysiology, Association for Applied Psychophysiology and Biofeedback, (2003)


References1

References

  • I. Alapin, C. S. Fichten, E. Libman, L. Creti, S. Bailes, and J. Wright, J Psychosom. Res. 49, 381, (2000)

  • R. J. Gatchel, R. C. Robinson, C. Pulliam and A. M. Maddrey, Semin. Pain Med., 1, 55 (2003)

  • E.Sokhadze, Appl.Psychophys.Biof. 32, 31 (2007)

  • J. H.Ricker, Introduction to Quantitative EEG and Neurofeedback, US: Academic Press, San Diego (1999)

  • S. P. Buckelew, D. E. DeGood, K. D. Roberts, J. D. Butkovic, and A. S. MacKewn.Appl.Psychophys.Biof. 34, 99(2009)

  • S.M. Doran, H.P.A. Van Dongen, and D.F. Dinges, Archives Italiennes de Biologie, 139, 253, (2001)

  • M. Teplan, A. Krakovska, and S. Stolc. Comput Meth Prog Bio, 102, 17. (2011)

  • R. Olmstead. J. Neurother, 9, 2, 49. (2005)

  • M. Joyce and D. Siever. J. Neurother, 4, 2, 9. (2000)

  • D.A. Timmermann, J. Lubar, H. Rasey, and J. Frederick. Int J Psychophysiol, 32, 55. (1999)

  • J. Frederick, D.A. Timmermann, H. Russell, and J. Lubar. J. Neurother.


References2

References

  • C. Cajochen, R. Foy, and D.-J. Dijk.Sleep Res Online.2, 65(2000)

  • C. Cajochen, S.B. Khalsa, J.K. Wyatt, C.A. Czeisler,D.-J. Dijk. Am J Physiol 277, R640.(1999)

  • A. M. Strijkstra, D.G. Beersma, B. Drayer, N. Halbesma, and S. Daan,Neurosci. Lett. 340,17.(2003)

  • Y. Harrison and J. A. Horne.J. Exp. Psychol. Appl. 6, 236–249 (2000a)

  • Y. Harrison, J. A. Horne and A. Rothwell. Sleep. 23, 1067. (2000)

  • M. Blagrove, C. Alexander, and J. A. Horne. Appl. Cogn. Psychol. 9, 21(1995)

  • J. May, and P. Kline, Br. J. Psychol. 78, 443(1987)

  • Y. Harrison, and J. Horne, Organ. Behav. Hum. Decis.Process. 78, 128(1999)

  • J. Limand D.Dinges,Annals of the New York Academy of Sciences, 1129,1, 305, (2008)


References3

References

  • M. Izzetoglu, K. Izzetoglu, S. Bunce, H. Ayaz, A. Devaraj, B. Onaral, and K. Pourrezaei. IEEE Trans Neural Netw. 13, 153, (2005)

  • T.S. Braver, J. D. Cohen. Cognitive Processing. 2, 25, (2001)

  • S.A. Bunge, J.D. Wallis, editors. Neuroscience of rule-guided behavior. Oxford University Press;Oxford(2008).

  • K. Low, E. Leaver, A. Kramer, M.Fabiani, and G.Gratton, Psychophysiol. 46,5, 1069, (2009)

  • E. John, H. Ahn, L. Princhep, M. Trepetin, D. Brown, and H. Kaye, Science. 52, 218, (1980)

  • T. Shi, X. Li, J. Song, N. Zhao, C. Sun, W. Xia, L. Wu, A. Tomoda, Brain & Dev. (Article in press), (2012)

  • B.S. Oken, M.C. Salinsky, and S.M.Elsas, ClinNeurophysiol. 117, 1885, (2006)

  • D. Beebe, D. Rose, and R. Amin, J. Adol. Health. 47, 523, (2010)

  • X. Xu, J. Gao, D. Ling, and T. Wang, J. Hum. Hypert. 21, 973, (2007)

  • J. S. Durmer,andD.F. Dinges. Seminars in Neurology, 25, 1, 117,(2005)

  • J. Dorrian, N. L. Rogers, andD.F. Dinges, In C. A. Kushida (Ed.), Sleep deprivation: Clinical issues, pharmacology and sleep loss effects. New York: Marcel Dekker, Inc., p. 39 (2005)


  • Login