1 / 46

Bergman Cycloaromatization

Bergman Cycloaromatization. ∆. 2 [H ]. Whitney M. Erwin February 21, 2002. Outline. Background Reaction Control - Substituent Effects - Variations - Use of metals - Triggers Applications - Synthesis - Materials Science - Biology IV. Summary. Robert G. Bergman.

jacoba
Download Presentation

Bergman Cycloaromatization

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bergman Cycloaromatization ∆ 2 [H ] Whitney M. Erwin February 21, 2002

  2. Outline • Background • Reaction Control - Substituent Effects - Variations - Use of metals - Triggers • Applications - Synthesis - Materials Science - Biology IV. Summary

  3. Robert G. Bergman • 1963 – B.S. Carleton College • 1966 – Ph.D. University of Wisconsin • 1966 - Postdoc Colombia University • 1968 - California Institute of Technology • 1977 - University of California - Berkeley

  4. Bergman Cycloaromatization 200 ºC 0.01 M 2 [H ] t1/2 = 30 s 100% 2,6,10,14-tetramethylpentadecane as solvent Jones, R. R.; Bergman, R. G. J. Am. Chem. Soc., 1972, 94, 660. Bergman, R. G. Acc. Chem. Res. 1973, 6, 25.

  5. Alkyne Termini Separation A d B C Critical d range for spontaneous cyclization at rt = 3.4 – 2.9 Å Schreiner, P. R. Chem. Commun. 1998, 4, 483. Schreiner, P. R. J. Am. Chem. Soc. 1998, 120, 4184. Nicolaou, K. C.; Zuccarello, G.; Ogawa, Y.; Schweiger, E. J.; Kumazawa, T. J. Am. Chem. Soc. 1988, 110, 4866.

  6. + 2 Calculated Values Schreiner, P. R. J. Am. Chem. Soc. 1998, 120, 4184.

  7. Outline • Background • Reaction Control - Substituent Effects - Variations - Use of metals - Triggers • Applications - Synthesis - Materials Science - Biology IV. Summary

  8. Alkynyl Substituent Effects Monosubstituted • Strong σ–acceptors and /or π-donors lower the cyclization barrier • Ex. –F, -OH, -NH3+, -OH2+ • π-Withdrawing groups raise the cyclization barrier • Ex. -BH2, -AlH2 ∆G (kcal/mol) ∆G (kcal/mol) R = R = H H Br Disubstituted Cl Cl NO2 • Barriers depend on steric hindrance to substituents in the TSs • Planar systems follow same pattern as above Br OH NO2 NH3+ OH Reaction coordinate Reaction coordinate F F OH2+ OH2+ Prall; M.; Wittikopp, A.; Fokin, A. A.; Schreiner, P. R. J. Comp. Chem. 2001, 22, 1605.

  9. Vinylic Substituent Effects • Electron-withdrawing groups increase the cyclization barrier. • Ex. –Cl, -NO2 • σ-Donating groups decrease the cyclization barrier. • Ex. -CH3, -(CH2)3 • π-Conjugation has little effect. • Most annulations slightly raise or lower the cyclization barrier. Jones, G. B.; Warner, P. M. J. Am. Chem. Soc. 2001, 123, 2134-2145.

  10. Effect of Ring Size and Electronics 9-membered 10-membered 11-membered 10-membered dichloro t1/2 = 8h/0°C t1/2 = 60h/40°C 18h/50°C 5h/80°C t1/2 = 2h/170°C t1/2 = 24h/170°C Jones, G. B.; Plourde II, G. W. Org. Lett. 2000, 2, 1757.

  11. Benzannelation Alters the kinetically important step in the cyclization of strained cyclic enediynes. H-donor Rate-limiting Retro-cyclization barrier = 15.3 kcal/mol H abstraction barrier = 12.7 kcal/mol H-donor Rate-limiting Retro-cyclization barrier = 5.9 kcal/mol H abstraction barrier = 11.8 kcal/mol Kaneko, T.; Takahashi, M.; Hirama, M. Tet. Lett. 1999, 40, 2015. Koseki, S.; Fujimura, Y.; Hirama, M. J. Phys. Chem. A1999, 103, 7672.

  12. Aza- and Protonated Aza-Bergmans Reaction coordinate Cramer, C. J. J. Am. Chem. Soc.1998, 120, 6261.

  13. Donors ∆ RH CCl4 CH3OH Bergman, R. G. Acc. Chem. Res. 1973, 6, 25.

  14. Mg2+-induced Cyclization MeOH, MgCl2 0°C, 8h 70% MeOH NaBH4, 5-10°C rt DMF, EDTA, CH2Cl2 40% Rawat, D. S.; Zaleski, J. M. J. Am. Chem. Soc. 2001, 123, 9675.

  15. Metal Coordination 194°C 116°C 152°C Benites, P. J.; Rawat, D. S.; Zaleski, J. M. J. Am. Chem. Soc. 2000, 122, 7208.

  16. CpRu as Accelerator / Inhibitor Accelerator THF, rt 0% THF, 5h, rt 71% Inhibitor 15% hν, CH3CN 0% hν, CD2Cl2 Funk, R. L.; Young, E. R. R.; Williams, R. M.; Flanagan, M. F.; Cecil, T. L. J. Am. Chem. Soc. 1996, 118, 3291. O’Connor, J. M.; Lee, L. I.; Gantzel, P. J. Am. Chem. Soc.2000, 122, 12057.

  17. Redox Control t½ = 15 h, 84°C t½ > 24 h, 120°C 82% Semmelhack, M. F.; Neu, T.; Foubelo, F. J. Org. Chem. 1994, 59, 5038.

  18. Tautomeric Trigger Lumazine Oxo tautomer Hydroxy tautomer DMSO 165°C DMSO 165°C t1/2 = 6.1 min. t1/2 = 10.1 min. 37% 0% Choy, N.; Russell, K. C. Heterocycles1999, 51, 13.

  19. “Photo-Bergman” hν A-3 (cis) + + i-PrOH A-1 A A-2 A-3 (trans) hν i-PrOH B-1 B Evenzahav, A.; Turro, N. J. J. Am. Chem. Soc. 1998, 120, 1835.

  20. “Photo-Bergman” hν A-3 (cis) + + i-PrOH A-1 A A-2 2 Product ratio 2 : 4 : 1 Mechanism: A-3 (trans) hν A 1[A] A-1 ISC [A] 3[A] A-2 + A-3 Evenzahav, A.; Turro, N. J. J. Am. Chem. Soc. 1998, 120, 1835.

  21. “Photo-Bergman” hν i-PrOH B B-1 Mechanism: hν B 1[B] B-1 ISC [B] 3[B] Evenzahav, A.; Turro, N. J. J. Am. Chem. Soc. 1998, 120, 1835.

  22. Other Triggering Methods • Release of ring strain • Acid and base-induction • Enzymatic protecting group cleavage Nicolaou, K. C.; Zuccarello, G.; Ogawa, Y.; Schweiger, E. J.; Kumazawa, T. J. Am. Chem. Soc. 1988, 110, 4866-4868. Nicolaou, K. C.; Dai, W.-M. Angew. Chem. Int. Ed. Engl. 1991, 30, 1387-1530. 16. Hay, M. P.; Wilson, W. R.; Denny, W. A. Bioorg. Med. Chem. Lett. 1999, 9, 3417-3422.

  23. Outline • Background • Reaction Control - Substituent Effects - Variations - Use of metals - Triggers • Applications - Synthesis - Materials Science - Biology IV. Summary

  24. Tandem Ring Annulation PhCl, 210°C 19-24 h n=1 72% n=2 53% If n = 1 and R = -CH2OTBS, yield = 58% 42% Grissom, J. W.; Calkins, T. L. Tet. Lett. 1992, 33, 2315.

  25. Double Aromatization 170-190°C < 0.005M 10% Bharucha, K. N.; Marsh, R. M.; Minto, R. E.; Bergman, R. G. J. Am. Chem. Soc. 1992, 114, 3120.

  26. Radical Cascade Path A H H Path B Bu3SnH / AIBN PhH, 80°C 36% Chow, S.-Y.; Palmer, G. J.; Bowles, D. M.; Anthony, J. E. Org. Lett. 2000, 2, 961. Bowles, D. M.; Palmer, G. J.; Landis, C. A.; Scott, J. L.; Anthony, J. E. Tetrahedron 2001, 57, 3753.

  27. Picenoporphyrins Aihara, H.; Jaquinod, L.; Nurco, D. J.; Smith, K. M. Angew. Chem. Int. Ed. 2001, 40, 3439.

  28. Morphine Synthesis • Consumption of morphine in the U.S. is approaching 100 metric tons annually. • Produced by commercial processing of raw opium from Papaver somniferium • Most efficient synthesis by Rice and coworkers gives 29% yield. • Skeleton of morphine can be used to make other related molecules such as codeine Morphine Codeine Heroin Butora, G.; Hudlicky, T.; Fearnley, S. P.; Stabile, M. R.; Gum, A. G.; Gonzalez, D. Synthesis1998, Sup. 1, 665.

  29. Morphine Route ∆ [O] H+ < 225°C Butora, G.; Hudlicky, T.; Fearnley, S. P.; Stabile, M. R.; Gum, A. G.; Gonzalez, D. Synthesis1998, Sup. 1, 665.

  30. Diasteroselective Radical Combination PhCl 230°C 55% Xu, J.; Egger, A.; Bernet, B.; Vasella, A. Helv. Chim. Acta1996, 79, 2004. Vasella, A. Pure Appl. Chem. 1998, 70, 425.

  31. Fullerenes from Cyclic Polyynes Retro [2+2] Hunter, J. M.; Fye, J. L.; Roskamp, E. J.; Jarrold, M. F. J. Phys. Chem. 1994, 98, 1810.

  32. Fullerenes from Cyclic Polyynes n = 48 C60 fullerene n = # of carbons in polyyne chain n-1 n = 58 C70 fullerene n n = 60 C76 fullerene n-5 n = 62 C78 fullerene Hunter, J. M.; Fye, J. L.; Roskamp, E. J.; Jarrold, M. F. J. Phys. Chem. 1994, 98, 1810.

  33. Fullerenes from Cyclic Polyynes Hunter, J. M.; Fye, J. L.; Roskamp, E. J.; Jarrold, M. F. J. Phys. Chem. 1994, 98, 1810.

  34. Thin-film Lithography Conventional Lithographic Process SMIP Process Chen, X.; Tolbert, L. M.; Hess, D. W.; Henderson; C. Macromolecules 2001, 34, 4104.

  35. 3,4-Bis(phenylethynyl)styrene Polymerization n n initiator 50°C 250°C m = 7-8 Chen, X.; Tolbert, L. M.; Hess, D. W.; Henderson; C. Macromolecules 2001, 34, 4104.

  36. Enediyne Antibiotics Esperimicin A1 Calicheamicin gI1 Dynemicin A Neocarzinostatin chromophore

  37. Calicheamicin Bound to DNA http://www.scripps.edu/chem/nicolaou/respages/bio20b.htm

  38. Calicheamicin γ1I Triggering device – initiates cyclization when the molecule reaches the target “Warhead” – enediyne capable of forming damaging 1,4-diradical Delivery system – targets molecule to DNA Lee, M. D.; Dunne, T. S.; Siegel, M. M.; Chang, C. C.; Morton, G. O.; Borders, D. B. J. Am. Chem. Soc. 1987, 109, 3464. Lee, M. D.; Dunne, T. S.; Chang, C. C.; Ellestad, G. A.; Siegel, M. M.; Morton, G. O.; McGahren, W. J.; Borders, D. B. J. Am. Chem. Soc. 1987, 109, 3466.

  39. Calicheamicin Mechanism d = 3.16Å d = 3.35Å t1/2 at 37°C = 4.5 ± 1.5 s DNA cleavage Nicolaou, K. C.; Dai, W.-M. Angew. Chem. Int. Ed. Eng. 1991, 30, 1387. Nicolaou, K. C.; Zuccarello, G.; Ogawa, Y.; Schweiger, E. J.; Kumazawa, T. J. Am. Chem. Soc. 1988, 110, 4866.

  40. DNA Cleavage [Ar ] 1. O2 2. [H ] ArH Red. De Voss, J. J.; Townsend, C. A.; Ding, W.-D.; Morton, G. O.; Ellestad, G. A.; Zein, N.; Tabor, A. B.; Schreiber, S. L. J. Am. Chem. Soc. 1990, 112, 9669.

  41. Mylotarg™ Gemtuzumab ozogamicin Recombinant antibody conjugated with Calicheamicin antibody - a protein molecule produced by vertebrates that binds with high specificity to a "foreign" entity (antigen) that has entered the system by one means or another http://www.fda.gov/cder/foi/label/2000/21174lbl.pdf

  42. Catalytic Antibody catalytic antibody (“abzyme”)- an antibody capable of catalyzing specific chemical reactions Process of generating a catalytic antibody • Design and synthesize a molecule whose charge and shape closely resemble those of the transition state of the reaction to be catalyzed. • Attach the molecule to a larger molecule and provoke an immune response to the complex in a living system. • Isolate the resultant antibodies for catalytic activity of the type desired.

  43. Antibody Catalysis Transition-state hapten analog 2 H O2 Jones, L. H.; Harwig, C. W.; Wentworth, Jr., P.; Simeonov, A.; Wentworth, A. D.; Py, S.; Ashley, J. A.; Lerner, R. A.; Janda, K. D. J. Am. Chem. Soc. 2001, 123, 3607.

  44. Targeted Protein Degradation = a member of a library of estrogenic probes Receptor cleavage Receptor recognition element Target receptor Jones, G. B.; Wright, J. M.; Hynd, G.; Wyatt, J. K.; Yancisin, M.; Brown, M. A. Org. Lett. 2000, 2, 1863.

  45. Summary • Bergman cycloaromatization can be tuned by: • Sterics • Electronics • Metals • Triggering devices (eg. tautomerization, release of ring strain) • Varied applications • Formation of polycyclic systems • Biological (eg. antibiotics, protein degradation) • Materials Science

  46. Acknowledgements Professor Charles T. Lauhon Konstantin Levitsky Jen Slaughter Jason Pontrello Lisa Jungbauer Margaret Biddle Wendy Deprophetis John Herbert Susie Martins Scott Petersen

More Related