Neutrino Masses from LSS Neutrino Masses from the CMB (III) The Dark Energy Survey. Ofer Lahav University College London. Concordance Cosmology. SN Ia CMB LSS – Baryonic Oscillations Cluster counts Weak Lensing Integrated Sachs Wolfe Physical effects: * Geometry
Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.
Neutrino Masses from LSS
Neutrino Masses from the CMB
(III) The Dark Energy Survey
Ofer Lahav
University College London
Physical effects:
* Geometry
* Growth of Structure
* Why bother? – absolute mass, effect on other parameters
* Brief history of ‘Hot Dark Matter’
* Limits on the total Neutrino mass from cosmology within CDM
M < 1 eV
* Mixed Dark Matter?
* Non-linear power spectrum and biasing – halo model
* Combined cosmological observations and laboratory experiments
Hot Dark Matter/top-down (East)
vs. Cold Dark Matter/bottom-up (West)
OL, astro-ph/0610713
Neutrinos decoupled when they were still relativistic, hence they wiped out structure on small scales
k > knr = 0.026 (m /1 eV)1/2m1/2 h/Mpc
Colombi, Dodelson, & Widrow 1995
CDM
CDM+HDM
WDM
Massive neutrinos mimic
a smaller source term
Thenumber of neutrino species Nn affects
the expansion rate of the universe, hence BBN.
BBN constraints Nn between 1.7 and 3 (95% CL)
(e.g. Barger et al. 2003).
From CMB+LSS+SN Ia, N =4.2+1.2-1.7(95% CL)
(Hannestad 2005)
We shall assume Nn =3
Electron, muon and tau neutrinos
Eigen states m1, m2, m3
112 neutrinos per cm3
Wnh2 = Mn/(94 eV)
Based on
measured
squared mass
differences
from solar and
atmospheric
oscillations
Assuming
m1 <m2 <m3
E & L, NJP 05
What could cosmic probes tell us about Neutrinos and Dark Energy?
The Growth factor: degeneracy of Neutrinos Mass and Dark Energy
Kiakotou, Elgaroy, OL
DP(k)/P(k) = -8 Wn /Wm
Not valid on useful scales!
Kiakotou, Elgaroy, OL 2007, astro-ph 0709.0253
Total n mass M< 1.8 eV
(Oscillations) (2dF)
Wn= 0.05
0.01
0.00
Elgaroy , Lahav & 2dFGRS team,
astro-ph/0204152 , PRL
n= 0.9
n=1.0
Prior 0< Wm<0.5
n= 1.1
Pg(k) = b2(k) Pm(k)
b(k) = a log(k) + c
a
---- SAM for
L>0.75 L*
Total neutrino mass
Elgaroy & Lahav , JCAP, astro-ph/030389
M
Abazajian & Dodelson (2003)
also Hannestad et al. 2006
Abazajian et al. (astro-ph/0411552)
modeled the effects of neutrino infall
into CDM halos
and incorporated it in the halo model.
The effect is small: P(k)/P(k) » 1%
at k » 0.5 h/Mpc for M» 1 eV
Future work : high-resolution simulations
with CDM, baryons and neutrinos
M =0.3, 0.9, 1.5, 6.0 eV
Fixed cdm = 0.26
E&L 2004
If znr > zrec
h2 > 0.017 (i.e. M > 1.6 eV)
Then neutrinos behave like matter -
this defines a critical value in CMB features
* Ichikawa et al. (2004 )
from WMAP1 alone M < 2.0 eV
* Fukugita et al. (2006)
from WMAP3 alone M < 2.0 eV
Fukugita, Ichikawa,
Kawasaki, OL, astro-ph/0605362
Not directly,
but reduces degeneracy with
the reionization optical depth
All upper limits 95% CL, but different assumed priors !
Note different error definitions and assumed priors !
Fogli et al.
Hep-ph/0408045
Combining KATRIN+CMB (Host, OL, Abdalla & Eitel 2007) =>> Ole’s talk
* Redshift surveys (+ CMB) Mn < 0.7-1.8 eV
Ly- (+ CMB+LSS) Mn < 0.17 eV
* Within the L-CDM scenarios, subject to
priors.
* Alternatives: MDM ruled out.
* Future: errors down to 0.05 eV
using SDSS+Planck,
and weak gravitational lensing of background galaxies and of the CMB.
Resolve the neutrino absolute mass!
Survey
Filters
Depth
Dates
Status
Sq. Degrees
CTIO
75
1
shallow
published
VIRMOS
9
1
moderate
published
COSMOS
2 (space)
1
moderate
complete
36
4
deep
complete
DLS (NOAO)
Subaru
30?
1?
deep
observing
2005?
170
5
moderate
observing
CFH Legacy
2004-2008
830
3
shallow
approved
RCS2 (CFH)
2005-2007
VST/KIDS/
VISTA/VIKING
1700
4+5
moderate
2007-2010?
50%approved
5000
4
moderate
proposed
DES (NOAO)
2008-2012?
Pan-STARRS
~10,000?
5?
moderate
~funded
2006-2012?
LSST
15,000?
5?
deep
proposed
2014-2024?
1000+ (space)
9
deep
proposed
JDEM/SNAP
2013-2018?
proposed
moderate
5000?
4+5
2010-2015?
VST/VISTA
proposed
moderate
2+1?
DUNE
20000? (space)
2012-2018?
Y.
Y. Mellier
z = 0.046
Collister, Lahav,
Blake et al.,
astro-ph/0607630
Baryon oscillations
Blake, Collister, Bridle & Lahav; astro-ph/0605303
Blanco 4-meter at CTIO
4 complementary techniques:
I. Cluster Counts
II. Weak Lensing
III. Baryon Acoustic Oscillations
IV. Supernovae
• Two multi-band surveys
5000 deg2g, r, i, z
40 deg2 repeat (SNe)
• Build new 3 deg2 camera
and data management system
Survey 2010-2015 (525 nights)
Response to NOAO AO
300,000,000 photometric redshifts
Fermilab: J. Annis, H. T. Diehl, S. Dodelson, J. Estrada, B. Flaugher, J. Frieman, S. Kent, H. Lin, P. Limon, K. W. Merritt, J. Peoples, V. Scarpine, A. Stebbins,
C. Stoughton, D. Tucker, W. Wester
University of Illinois at Urbana-Champaign: C. Beldica, R. Brunner, I. Karliner, J. Mohr, R. Plante, P. Ricker, M. Selen, J. Thaler
University of Chicago:J. Carlstrom, S. Dodelson, J. Frieman, M. Gladders,
W. Hu, S. Kent, R. Kessler, E. Sheldon, R. Wechsler
Lawrence Berkeley National Lab: N. Roe, C. Bebek, M. Levi, S. Perlmutter
University of Michigan: R. Bernstein, B. Bigelow, M. Campbell, D. Gerdes, A. Evrard, W. Lorenzon, T. McKay, M. Schubnell, G. Tarle, M. Tecchio
NOAO/CTIO: T. Abbott, C. Miller, C. Smith, N. Suntzeff, A. Walker
CSIC/Institut d'Estudis Espacials de Catalunya (Barcelona):F. Castander, P. Fosalba, E. Gaztañaga, J. Miralda-Escude
Institut de Fisica d'Altes Energies (Barcelona):E. Fernández, M. Martínez
CIEMAT (Madrid): C. Mana, M. Molla, E. Sanchez, J. Garcia-Bellido
University College London: O. Lahav, D. Brooks, P. Doel, M. Barlow, S. Bridle, S. Viti, J. Weller
University of Cambridge:G. Efstathiou, R. McMahon, W. Sutherland
University of Edinburgh:J. Peacock
University of Portsmouth: R. Crittenden, R. Nichol, R. Maartnes, W. Percival
University of Sussex: A. Liddle, K. Romer
plus postdocs and students
The Dark Energy Survey UK Consortium
(I) PPARC funding:
O. Lahav (PI), P. Doel, M. Barlow, S. Bridle, S. Viti, J. Weller (UCL),
R. Nichol (Portsmouth), G. Efstathiou, R. McMahon, W. Sutherland (Cambridge)
J. Peacock (Edinburgh)
Submitted a proposal to PPARC requesting £ 1.7M for the DES optical design.
In March 2006, PPARC Council announced that
it “will seek participation in DES”.
PPARC already approved £220K for current R&D.
(II) SRIF3 funding:
R. Nichol, R. Crittenden, R. Maartens, W. Percival (ICG Portsmouth)
K. Romer, A. Liddle (Sussex)
Funding the optical glass blanks for the UCL DES optical work
These scientists will work together through the UK DES Consortium.
Other DES proposals are under consideration by
US and Spanish funding agencies.
DES Forecasts: Power of Multiple Techniques
w(z) =w0+wa(1–a) 68% CL
Assumptions:
Clusters:
8=0.75, zmax=1.5,
WL mass calibration
BAO:lmax=300
WL:lmax=1000
(no bispectrum)
Statistical+photo-z
systematic errors only
Spatial curvature, galaxy bias
marginalized,
Planck CMB prior
Factor 4.6 improvement over Stage II
DETF Figure of
Merit: inverse
area of ellipse
Mn
0.0 eV
0.4
0.9
1.7
Back of the envelope: improved by sqrt (volume) => Sub-eV from DES
(OL, Abdalla, Black; in prep)
DES and a Dark Energy Programme
* Vacuum energy
(cosmological constant, w= -1.000 after all ?)
* Dynamical scalar field ?
* Modified gravity ?
* Why /m = 3 ?
* Non-zero Neutrino mass < 1eV ?
* The exact value of the spectral index: n < 1 ?
* Excess power on large scales ?
* Is the curvature zero exactly ?