nist spectroscopic research on heavy elements 2005 2009
Download
Skip this Video
Download Presentation
NIST Spectroscopic Research on Heavy Elements 2005 - 2009

Loading in 2 Seconds...

play fullscreen
1 / 33

NIST Spectroscopic Research on Heavy Elements 2005 - 2009 - PowerPoint PPT Presentation


  • 66 Views
  • Uploaded on

NIST Spectroscopic Research on Heavy Elements 2005 - 2009. Wolfgang L Wiese National Institute of Standards and Technology (NIST), USA.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' NIST Spectroscopic Research on Heavy Elements 2005 - 2009' - ifama


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
nist spectroscopic research on heavy elements 2005 2009

NIST Spectroscopic Research on Heavy Elements 2005 - 2009

Wolfgang L Wiese

National Institute of Standards and Technology (NIST), USA

slide2

General Objective: Determine experimentally and theoretically the atomic structure of heavy element atoms and ions of importance for magnetic fusion energy research

Main approaches:

  • Measurements of heavy element spectra with vacuum sparks, lasers and the Electron Beam Ion Trap (EBIT). (This device reaches now charge state 68+.)
  • Supporting analysis with pertinent plasma codes.
  • Comprehensive critical compilations of atomic energy levels, wavelengths and transition probabilities os selected heavy elements
  • Atomic structure calculations with sophisticated Hartree-Fock and Dirac-Fock programs
  • Calculations of ionisation and excitation cross sections with the Binary Encounter Bethe (BEB) model and derivatives
  • Analysis of the neutral chlorine spectrum with a wall-stabilized arc
participants
Participants

Experimental Research: J. Reader, G. Nave,

J. Gillaspy, M. Bridges,*

W. Wiese*

Theoretical Approaches: Ch. Froese-Fischer,*

Y. Ralchenko,*

Y.-K. Kim , P. Stone*

Data Assessment and J. Reader, E. Saloman,*

Compilations: J. Fuhr,* D. Kelleher,*

L. Podobedova,*

A. Kramida,* W. Wiese*

Database Development: Y. Ralchenko,*

A. Kramida*

R. Ibacache

*indicates Contractors or Guest Researchers

slide4

General Objective: Determine experimentally and theoretically the atomic structure of heavy element atoms and ions of importance for magnetic fusion energy research

Main approaches:

  • Measurements of heavy element spectra with vacuum sparks, lasers and the Electron Beam Ion Trap (EBIT). (This device reaches now charge state 68+.)
  • Supporting analysis with pertinent plasma codes.
  • Comprehensive critical compilations of atomic energy levels, wavelengths and transition probabilities os selected heavy elements
  • Atomic structure calculations with sophisticated Hartree-Fock and Dirac-Fock programs
  • Calculations of ionisation and excitation cross sections with the Binary Encounter Bethe (BEB) model and derivatives
  • Analysis of the neutral chlorine spectrum with a wall-stabilized arc
the nist electron beam ion trap ebit
The NIST Electron Beam Ion Trap (EBIT)

The EBIT not only creates a highly charged ions, but can hold their center of mass at rest.

This overcomes the primary limitation of large HCI facilities for precision spectroscopy.

EBIT size

~ 1 m

To first order, the relative Doppler shift is

Dl/l =v/c

slide6

107 K plasma

EBIT Internal View

EBIT on a table top

Ion production, trapping, and excitation

http://physics.nist.gov/ebit

slide7

A simplified EBIT:

Intense Electron Beam (4,000 A/cm2)

Strong magnetic field (3 tesla)

Highly Charged Ions (up to Bi72+at NIST).

2 cm

Ultrahigh vacuum (~10-10 torr)

Creates (by electron impact ionization) Traps (by electric and magnetic fields) Excites (electron impact)

Ion cloud width ~ 150 mm

slide8

Quantum Microcalorimeter

  • operates at 65 mK
  • absorber: a foil of
  • superconducting tin
  • thermistor: neutron
  • transmutation-doped
  • (NTD)germanium
slide12

Spectra as a function of electron beam energy

(Only a small subset shown. We have done this for several elements, extending as high as 24 keV for some)

slide13

Tungsten Data Tables from Recent Publications of the NIST EBIT Team

Includes new lines, and corrects misidentification from other groups.

slide15

General Objective: Determine experimentally and theoretically the atomic structure of heavy element atoms and ions of importance for magnetic fusion energy research

Main approaches:

  • Measurements of heavy element spectra with vacuum sparks, lasers and the Electron Beam Ion Trap (EBIT). (This device reaches now charge state 68+.)
  • Supporting analysis with pertinent plasma codes.
  • Comprehensive critical compilations of atomic energy levels, wavelengths and transition probabilities os selected heavy elements
  • Atomic structure calculations with sophisticated Hartree-Fock and Dirac-Fock programs
  • Calculations of ionisation and excitation cross sections with the Binary Encounter Bethe (BEB) model and derivatives
  • Analysis of the neutral chlorine spectrum with a wall-stabilized arc
slide17
Electron-Impact Cross Section Database(http://physics.nist.gov/ionxsec)M. A. Ali, K. K. Irikura, Y.-K. Kim, P. M. Stone

Already in the database:

1. Total ionization cross sections of neutral atoms and molecules, singly charged molecular ions (about 100)

2. Differential ionization cross sections of H, He, H2

3. Excitation cross sections of light atoms

Recent Results:

4. Total ionization cross sections (direct + excitation-autoionization) of Mo, Mo+, W, W+ (joint work with KAERI, see graphs)—BEB model plus BE/E scaling of Born cross sections [Mo/Mo+ in Kwon, Rhee & Kim, Int. J. Mass Spectrometry, 245, 26 (2005)]

5. Excitation cross sections of H2 (see graphs)—BE scaling of Born cross sections

6. Ionization cross sections of Si, Ge, Sn, Pb, Cl, Br, I, Cl2, Br2, I2

slide20

Ar I

Excitation cross section from the metastable level 3p54s to 3p55p

slide21

General Objective: Determine experimentally and theoretically the atomic structure of heavy element atoms and ions of importance for magnetic fusion energy research

Main approaches:

  • Measurements of heavy element spectra with vacuum sparks, lasers and the Electron Beam Ion Trap (EBIT). (This device reaches now charge state 68+.)
  • Supporting analysis with pertinent plasma codes.
  • Comprehensive critical compilations of atomic energy levels, wavelengths and transition probabilities os selected heavy elements
  • Atomic structure calculations with sophisticated Hartree-Fock and Dirac-Fock programs
  • Calculations of ionisation and excitation cross sections with the Binary Encounter Bethe (BEB) model and derivatives
  • Analysis of the neutral chlorine spectrum with a wall-stabilized arc
spectral emission analysis to determine transition probabilities a
Spectral Emission Analysis to determine Transition Probabilities (A)
  • Arc Plasma operates at atmospheric pressure, electron density is about 1017 cm-3
  • Local Thermodynamic Equillbrium (LTE) applies
  • Line intensities I are measured to determine relative transition probabilities Ar initiating in atomic states m

I~(gm/λ) Ar exp(-Em/kT)

  • Normalization to absolute A by one (or more) radiative lifetimes τ

τm =

and τm when there is one dominant transition

slide30

An Example:

A-values for the 4s 2P -4p 2S doublet of Cl I

Experiments

C a l c u l a t i o n s

d (l-v) is the relative difference between the dipole-length and velocity results

slide33

Summary of principal NIST contributions to the

IAEA CRP on Heavy Elements

Investigations of spectra of heavy elements:

Cl I, Ar I, Fe IV, Kr I, Xe VII to Xe XLIV, W XL to W XLVIII, W LV to W LXIV

Calculations of cross sections:

Ar I(ionization, BEB), Ar I(excitation, plane wave Born)

Compilations of Reference Data:

Energy Levels, Wavelengths: Kr I to Kr XXXVI, W I to WLXXIV(510 pages!)

Ionization Energies: WIII to W LXXII

Transition Probabilities: Al I to Al XIII, Si I to Si XIV, Fe I and Fe II

ad