...
Sponsored Links
This presentation is the property of its rightful owner.
1 / 67

درس کنترل ديجيتال مهر 1391 PowerPoint PPT Presentation


  • 151 Views
  • Uploaded on
  • Presentation posted in: General

بسم ا... الرحمن الرحيم. درس کنترل ديجيتال مهر 1391. دکتر حسين بلندي/دکتر سید مجید اسماعیل زاده/ دکتر بهمن قربانی واقعی. Discretization of Continuous-Time State Space.

Download Presentation

درس کنترل ديجيتال مهر 1391

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


...

1391

/ /


Discretization of Continuous-Time State Space

- - - . . Sampling .

- -

.

.


:

.

fixed .


Zero-Order-Hold

Interval

.

:


:

.

.


Identity .


:

T=1

:


If


:

  • . . .

  • LTI TV .


:

.

.

LTI .

:

G,F,E,A D,B .

F,A .

E,G .

D,B . ( )


:

: .

: .

:


:

L T I :

Anonsingular Asingular . (1) (2) .


:

k :


:

:

. .

. .


( Enlarge(:

.

:


() . .

:


( )

general . .


.

1- = x(0)

2- converge

3-

Reflect .

.


:


LTI


:

:

1:

LTI .

:


: A .

: A A . A .

(CT CHEN) :


2:

A .

3:

.

4:

:

A ( ) .

A A(minimal Polynomial) .


.

:

.

G(s) A .

:

G(S) BIBO G(S) .


:

not A.S.YStable


6 :

:

1) .

2) BIBO .

3) .

4) .

5) A .


:

x(t) . . ( )LT / LTI / . (v(x . (v(x .

. .


  • :

v(x)

P.D

:

  • :

v(x) v(x)- .

  • PSD

v(x) PSD

.


  • N.S.D

(v(x N.S.D (PSD , -v(x .

.

(v(x

:

:


:

:


2:

( ) 2 .

2

.


1382


p :

1) p .

2) . ( ) .



:

1)

2)

3) 2P .S. D, P .

4) 2 N.S.D P . 2 .


:


:


:

P.D N.D .

.

I.S.L .


:

:

:

.


:

:

:

.


:

Dr. H. Bolandi

:

.


.

:

:


:

1) .

2) unique .

3) / .


L T I :

:

A x=0 :

v :


v(x) P.D N.D. :


:

:

.

P Q P.D Q P.D P


:


Remarks


:

.


:


2)

a .

ATP+PA=-I


a<0 .


  • . V(x)v(x(k))=V(x(k+1)T)-V(x(kT)) .

  • x(k+1)=Gx(k) x n Q nonsingular n*n x=0 .

  • V(x(k))=x*(k)Px(k) .P .


v(x(k))=V(x(k+1))-V(x(k))

=x*(k+1) P x(k+1)-x*(k) P x(k)

=[Gx(k)]* P [Gx(k)]-x*(k) P x(k)

=x*(k) G* P G x(k)-x*(k) P x(k)

=x*(k)[G*PG-P]x(k)

v(x(k)) V(x(k))=-x*(k)Qx(k) -Q=[G*PG-P] . Q .


Q P :

G*PG-P=-Q

P .


x(k+1)=Gx(k) .

X n

G nonsingular , n*n

0=x Q P ( ) :

G*PG-P=-Q

x*Px V(x(k))=-x*(k)Qx(k) Q .


:

P v(x(k))=-xTQx .


:

. .


:

:


:

k >1 .


:

:


:

k .


:

k1 k2 . 2 . .


y(t) x(t) .


  • Login