Msan kurs @eye networks 24 og 25 oktober
This presentation is the property of its rightful owner.
Sponsored Links
1 / 137

MSAN kurs @Eye Networks, 24. og 25. oktober PowerPoint PPT Presentation


  • 200 Views
  • Uploaded on
  • Presentation posted in: General

MSAN kurs @Eye Networks, 24. og 25. oktober. ZyXEL Communications Anders Opsahl ( [email protected] ). Agenda. Dag 1, grunnleggende Kjapt om IES-5xxx/-6000 - Antall og typer linjekort - Måter å aksessere DSLAM - Firmware-oppgradering - Backup / restore / save VLAN og IP

Download Presentation

MSAN kurs @Eye Networks, 24. og 25. oktober

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Msan kurs @eye networks 24 og 25 oktober

MSAN [email protected] Networks, 24. og 25. oktober

ZyXEL Communications

Anders Opsahl ([email protected])


Msan kurs eye networks 24 og 25 oktober

Agenda

Dag 1, grunnleggende

Kjapt om IES-5xxx/-6000

- Antall og typer linjekort

- Måter å aksessere DSLAM

- Firmware-oppgradering- Backup / restore / save

VLAN og IP

- Sette IP og gateway, samt Management-VLAN

- Fixed og untagged, samt PVID

Port-setup

- Lage profil, sette profil på port(er)

- Åpne og stenge porter

- PVC-setup

Enkel feilsøking

- Hva om det ikke går trafikk på en port?

- Hva om linjekortet ikke blir "active"?

Dag 2

Port-setup

- VDSL2 (Profil, PSD-maske)

- VDSL2 med ADSL2+ fallback

- SHDSL-bundling

- EFM-oppsett

Tjenester

- Quality of Service

- Multicast

ACL

- Anti-MAC-spoofing


Vdsl1 vs vdsl2

VDSL1 vs. VDSL2


Vdsl band plan

VDSL Band Plan

VDSL Band Plan

PSD (dBm/Hz)

POTS

DS1

US1

DS2

US2

138kHz

Frequency (MHz)

3.75MHz

5.2MHz

8.5MHz

12MHz


Vdsl2 band plan

VDSL2 Band Plan

VDSL2 Band Plan

PSD (dBm/Hz)

DS1

US1

DS2

US2

DS3

138kHz

US3

30MHz

POTS

Frequency (MHz)

3.75MHz

5.2MHz

8.5MHz

12MHz

18MHz


Vdsl2 profile

VDSL2 Profile


Vdsl2 band plan1

VDSL2 Band Plan

VDSL2 Band Plan Table (998)

  • Plan 998 approved for ANSI T1 (for North America, Japan and Europe)

  • • Plan 997, 998 approved for ETSI (for Europe)

  • • US0 for Annex B: 120 – 276 kHz, DS1 for Annex B: 276 kHz -


Basics of the dmt technology

PSD (dBm/Hz)

Frequency (MHz)

Basics of the DMT Technology

QAM-Modulated subchannel (tone) individually optimized as a function of impairments

Unused tone

  • Each band divided into hundreds of 4kHz sub-bands

  • • Each sub-band carries a narrow QAM signal

  • • ADSL compatible tone spacing (4.3125kHz)

  • • Bandwidth optimization and frequency division duplexing occur by zeroing many sub-bands


Basics of the dmt technology1

Basics of the DMT Technology

  • DMT (Discrete Multi-tone)

Ideal bits/tone

Typical Loop Gain

Actual bits/tone

Ideal bits/tone

Typical Loop Gain

Actual bits/tone


Psd psd mask

PSD & PSD Mask

  • Power Spectral Density

  • Defines the distribution of Power on a VDSL line

  • PSD Mask is a Template that specifies the max. allowable PSD for a Line

  • The unit of PSD is dBm/Hz


Limit psd mask

Limit PSD Mask

  • Reduce the impact of interference and attenuation

  • Specified by ITU-T 993.2

  • MIB PSD Mask allows administrator to Tune the Limit PSD Mask


Configuration limit psd mask

Configuration - Limit PSD Mask


Optional band

Optional Band

  • Optional Band controlled by Limit PSD Mask.

  • Optional Band is used for upstream transmission

  • Negotiated during line Initiation


Annex a us0 mask

Annex A US0 Mask


Msan kurs eye networks 24 og 25 oktober

VDSL

UPBO/DPBO


Upstream power back off

Upstream Power Back-off

PSD

PSD

PSD

f

f

f

PSD

f

PSD

f

  • Full-power upstream transmissions on short loops result in high-level far-end crosstalk (FEXT) noise on long (far) loops.

  • Upstream bit rates on long loops can be dramatically reduced.


Upstream power back off cont

Upstream Power Back-off (Cont.)

PSD

PSD

PSD

f

f

f

PSD

f

PSD

f

  • Upstream transmitters must reduce their PSDs so the levels of FEXT they inject to shorter loops are lower.

  • The process of reducing the upstream PSD is known generically as up stream power back-off (UPBO)


Upstream power back off cont1

Upstream Power Back-off (Cont.)

  • Varying telephone wiring lengths cause cross talk

  • Enable UBPO to adjust the Transmit PSD based on reference line length


Upstream power back off1

Upstream Power Back-off

  • General Conclusions

  • Non-FEXT dominated environment:

  • Do not apply UPBO!

  • It only causes SNR reduction in short loops with no SNR

  • improvement in long loops.

  • FEXT-dominated environment:

  • Apply UPBO for all loops shorter than the longest one!

  • An appropriate UPBO value can always be found that avoids any SNR reduction and even improves the SNR in either long or short loops (because of lower FEXT coupling in short loops).


Downstream power back off

Downstream Power Back-off

  • VDSL signal may interfere with other service on the same bundle of Lines

  • DPBO can reduce performance degradation bychanging PSD Level


Msan kurs eye networks 24 og 25 oktober

xDSL

Error Correction (QoS)


Error correction qos

Error Correction (QoS)

  • Interleave and Reed-Solomon (FEC)

    • BitErrorRate 10-7, 0dB SNR

      • Max 1 bitfeil per 10 millioner bits

      • 20Mbps = ?

    • NoiseMargin

      • 6dB SNR = BER 10-24

      • Reallife ≤ BER 10-9

    • Reed-Solomon

      • Sender redundant data

      • Single bit error correction

    • Interleaving 

      • Økt latency

      • Kun maks, ingen minimum

      • Beskyttelsen er avhengig av

        linkspeed


Error correction qos1

Error Correction (QoS)

  • INP (Impulse Noise Protection)

    • Bit rate = Number_of_tones_per_symbol * Bits_per_tone * Symbolrate

    • ADSL example: 512*15*4000 = 30,7 Mbps is the theoretically maximum bitrate for up/downstream combined

    • 1 Symbol = All tones

    • 4000 Symbols per second

    • 1 Symbol = 250 µs (30a = 125 µs)


Error correction qos2

Error Correction (QoS)

  • Inp

    • Gir minimumsbeskyttelse


Error correction qos3

Error Correction (QoS)

  • INP

    • Med D0


Error correction qos4

Error Correction (QoS)

  • INP 2 (symbols) og 8 ms Interleave = 500µs beskyttelse

  • Får du mer enn 500µs Impulse Noise så kan du miste 8ms med data


Error correction qos5

Error Correction (QoS)

  • BitErrorRate 10-7, 0dB SNR

    • Max 1 bitfeil per 10 millioner bits

    • 5 Mbps = ?

  • NoiseMargin

    • 6dB SNR = BER 10-24

    • Reallife ≤ BER 10-9

  • Reed-Solomon

    • Sender redundant data

    • Single bit error correction

  • Interleaving

    • Økt latency

    • Kun maks, ingen minimum

    • Beskyttelsen er avhengig av link-speed

    • INP * Gir minimumsbeskyttelse * Opererer uavhengig av link-speed * Broadcom: ”…field data demonstrating that at least 5 ms [INP] are required.”


Error correction qos6

Error Correction (QoS)

  • PhyR (Fire)

    • Broadcom propritær terminologi


Error correction qos7

Error Correction (QoS)

  • PhyR

    • Selv om det blir bedt om en retransmit så sendes den korrupte dataen videre innover så RS kan forsøke å reparere pakka

    • Kun overhead ved feil (+ RS), ingen Interleaving

    • Høyere INP uten ”penalties” (linkspeed/latency)

    • BER 10-10 på 0 dB SNR

    • Enkel provisjonering

    • Ingen vedlikehold

    • Håndteres av DSL-chippen, ikke noe på høyere layer


Msan kurs eye networks 24 og 25 oktober

PhyR


Msan kurs eye networks 24 og 25 oktober

PhyR

The INP value starts from 17.0 (DMT Symbol) when PhyR is enabled.


Msan kurs eye networks 24 og 25 oktober

VDSL

Port setup (-> 31.10.10)


Vdsl2 port setup

VDSL2 port setup

  • Profile 12b, No US0, B8-9 mask, UPBO


Msan kurs eye networks 24 og 25 oktober

VDSL

Port setup (01.11.10 ->)


Vdsl2 port setup1

VDSL2 port setup


Vdsl2 port setup2

VDSL2 port setup


Vdsl2 port setup3

VDSL2 port setup

  • Profile 17a, US0 (120 kHz – 276 kHz), UPBO, Mask: B8-2, B8-3, B8-6, B8-10, B8-12, B8-15


Lab vdsl2 link ihht telenor oa us0 nus0

10.0.0.x/24

Lab – VDSL2 link ihht Telenor OA (US0/NUS0)

10.0.0.1/255.255.255.0

VDSL2 CPE


Vdsl2 port setup4

VDSL2 port setup

  • Hands on, port statistics - linedata

  • Profile 17a, US0 (120 kHz – 276 kHz), UPBO, Mask: B8-2 (), B8-3 (), B8-6 (), B8-10 (), B8-12(), B8-15 ()

    (tone x 4,3125 = kHz)


Zyxel bonding

ZyXEL Bonding


Why do we need g bond

Why do we need G.bond?

  • Offers higher rate by bundling several copper pairs

  • Supports bandwidth hungry services

    • Triple play

  • Squeezing out the last bit of bandwidth out of copper infrastructure, rather than rolling out new fiber.


Itu t recommendations

ITU-T recommendations

  • ITU-T G.998 series of recommendations (known as G.bond), include three parts:

    • G.998.1 - ATM-based xDSL bonding

    • G.998.2 - Ethernet-based xDSL bonding (EFM – 802.3ah)

    • G.998.3 - Time-Division Inverse Multiplexing (TDIM).

      • Not include in this course


Msan kurs eye networks 24 og 25 oktober

ZyXEL ATM Bonding

- Introduction


Atm based xdsl bonding objectives

ATM-based xDSL bonding objectives

  • Dynamic removal and restoration of pairs without human intervention.

  • Supports disparate data rates amongst its pairs, up to a ratio of 4-to-1 (fastest to slowest).

  • Allow bonding of 2-32 pairs.

  • Permit bonding of randomly assigned ports on an access node.

  • The protocol shall be PHY independent.

  • It shall incur a maximum overall one-way bonding delay of 2 ms.


Main steps of atm based bonding

Main steps of ATM-based bonding

Incoming Data

Segmentation

Segmented Data

Segmented Data

Segmented Data

Inserting

Sequence ID

SID

Segmented Data

SID

Segmented Data

SID

Segmented Data

DSL

Link 1

DSL

Link 2

DSL

Link n

Transmission

Reassembly

Reconstructed Data Stream


Mode of operation 1 3

Mode of Operation (1/3)

  • 1. Sequencing payload of traffic

    • 8-bit sequence Index (SID)

    • 12-bit sequence Index (SID)


Mode of operation 2 3

Mode of Operation (2/3)

  • 2. Bonding Group ID (GID)

    • The bonding group has a unique GID, assigned by CO ME.

    • CPE will learn the GID during initialization.

    • ME: Management Entity

Standard ATM Cell Format


Mode of operation 3 3

Mode of Operation (3/3)

  • 3. Autonomous Status Message (ASMs)

    • ASMs with unique GIDs are used to communicate the status of the links in the group.

    • Used both for startup and maintenance group links.


Asm message format 1 2

ASM Message Format (1/2)


Asm message format 2 2

ASM Message Format (2/2)

0

1

30

31

62

63

Link ‘0’

Link ‘16’

Link ‘31’


Mode of operation 1 31

Mode of Operation (1/3)

  • 4. Link eligibility and link activation

    • The receiving entity determines whether a link is eligible.


Mode of operation 2 31

Mode of Operation (2/3)

  • 4-1 Link eligibility

Tx knows it can use the link


Mode of operation 3 31

Mode of Operation (3/3)

  • 4-2 Link activation

Bonded traffic can flow on this link


Msan kurs eye networks 24 og 25 oktober

ZyXEL Bonding - ATM vs. PTM


Eodsl

EoDSL

  • Three different transport modes have been specified and standardized for use in various Digital Subscriber Line (xDSL) system:

    • Asynchronous Transfer Mode (ATM)

    • Synchronous Transfer Mode (STM)

    • Packet Transfer Mode (PTM)


Eovdsl functional stack

EoVDSL Functional Stack

  • PTM is believed to be more appropriate for the transport of Ethernet frames because it is inherently packet-oriented.

    • PTM mode is a low-overhead, transparent way of transporting packets.

    • PTM is specified to allow any kind of packets( IP,PPP, Ethernet, MPLS, etc.) to run over it.

γ-interface


Encapsulation and error correction

Encapsulation and Error correction

  • Encapsulation

    • ATM uses ATM cell encapsulation

    • PTM uses HDLC encapsulation

  • Error correction

    • ATM encapsulation provides a single bytes of redundancy calculated over the bytes in HEC(Header Error Check).

    • If The HEC fails at the receiver side, the entire cell is discarded

    • HDLC encapsulation provides two bytes of redundancy, calculated with the CRC-CCITT algorithm over the entire content of HDLC frame.

    • If CRC fails at the receiver side, this failure is signaled to the higher layers.


Flow control

Flow Control

  • In ATM, it keeps the flow control in the hands of the lower layers.

  • In PTM, it receives and transfer packets with appropriate signals for flow control by the help of γ-interface.

  • In PTM, flow control is Octet-basis, instead of Cell-basis in ATM.


Loop aggregation

Loop Aggregation

  • “Loop Aggregation” is used here to denote the use of several physical DSL links as a single logical data path carrying a stream of packets.

  • Loop aggregation fragments individual frames in smaller parts, which are then dropped into the different physical links.

  • In ATM, data packets are already fragmented into 48-byte cells, which normally travel over the same physical channel.


Msan kurs eye networks 24 og 25 oktober

SHDSL

EFM


Shdsl efm

SHDSL EFM


Shdsl efm bonding

SHDSL EFM bonding

  • SLC1348G-22

    • EFM / ATM bonding

  • EFM bonding begrensninger

    • Kan kun EFM bonde på samme chip (1-4, 5-8, 9-12, etc)

    • Maks 4 par

  • CPE- SAM1316-22

    • EFM Bonding

    • Samme chip som i SLC1348G-22


Msan kurs eye networks 24 og 25 oktober

QoS

Queuing methods


Queue method overview

Queue Method Overview

  • Queuing is used to help solve performance degradation in network congestion.

  • Currently, it supports two scheduling methods:

    • SPQ

    • WRR

    • Only SPQ for DSL-ports

    • SPQ or WRR for uplink-ports


Priority to queue assignment

Priority to Queue Assignment

  • IES-5000/-6000 has 8 hardware queues.


Strict priority queuing spq

Strict Priority Queuing (SPQ)

  • High Priority Queuesendsfirst(Default)

  • Low Priority Queue packets will not be sent until the High Priority Queue is empty

High priority first out

High Priority Queue

Low Priority Queue

Switch

t


Weighted round robin wrr

Weighted Round Robin (WRR)

  • Each queue has its weighted value

  • The queue selection schedule is round-robin

  • The policy is based on packet

High priority is sent out first with weight 3

W=3

High Priority Queue

Middle Priority Queue

W=2

Low Priority Queue

W=1

Switch

t


Weighted round robin wrr1

Weighted Round Robin (WRR)

3

X 100M

= 50M

B =

1 + 2 + 3

  • Bandwidth for the Highest Priority Queue if each packet has the same packet size:


Special scenario of wrr

Special Scenario of WRR

  • Special Scenario

    • If the low priority queue has large packet sizes

W=3

High Priority Queue

Middle Priority Queue

W=2

Low Priority Queue

W=1

Switch

t

The low priority queue has the "Highest Bandwidth"


Msan kurs eye networks 24 og 25 oktober

ATMQoS


Atm traffic classes

CBR(Constant Bit Rate)

Provides fixed bandwidth

Doesn’t tolerate delay

For voice transfer

VBR(Variable Bit Rate)

Used with bursty connections

rt-VBR for video conferencing (Requires closely controlled delay)

Nrt-VBR for data file transfer (Doesn’t require closely controlled delay)

UBR(Unspcified Bit Rate)

Bursty Data transfers

Doesn’t guarantee any bandwidth, only delivers traffic when the network has spare bandwidth

ATM Traffic Classes


Atm traffic classes1

UBR

Usage of capacity

VBR

CBR

Time

ATM Traffic Classes


Atm qos profile cbr

ATM QoS Profile (CBR)


Atm qos profile vbr

ATM QoS Profile (VBR)


Atm qos implement on port

ATM QoS Implement on port


Msan kurs eye networks 24 og 25 oktober

IPQoS


Msan kurs eye networks 24 og 25 oktober

QoS Background

  • “Best effort” is the characteristic of an IP network

  • -Trying its best to send the packet from the source to

  • destination

  • -No commitment in QoS

    • Why QoS

    • -Newly emerging services: VoIP IPTV etc.

    • -the “dumb” IP network need some intelligence


Msan kurs eye networks 24 og 25 oktober

IPQoS in MSAN/VES

  • Groups and prioritizes in queues for downstream direction(Toward CPE)

  • Four parameter

    -PIR(Peak Information Rate)

    -CIR (Committed Information Rate)

    -PBS(Peak Burst Size)

    -CBS(Committed Burst Size)


Msan kurs eye networks 24 og 25 oktober

Notes

  • IPQoS is applied to the downstream traffic only.

  • Limit IP data rate of the traffic flowing through a physical queue.

  • Supports 1,2,4,8 queues.

  • Used, instead of ATM QoS, when falling back to ADSL2+ mode


Msan kurs eye networks 24 og 25 oktober

IPQoS Profile


Msan kurs eye networks 24 og 25 oktober

Switch queue mapping


Msan kurs eye networks 24 og 25 oktober

VLAN Priority


Msan kurs eye networks 24 og 25 oktober

Implement On Port1


Msan kurs eye networks 24 og 25 oktober

VDSL Mode

IES-5000

Switch

Tag: p=0

P=7

Tag: p=7

P=0

VDSL2 CPE

Port1

100Mbps

40

Mbps

60

Mbps

FTP

VOD


Msan kurs eye networks 24 og 25 oktober

IGMP Snooping/Proxy


Msan kurs eye networks 24 og 25 oktober

IGMP Snooping

  • IGMP Snooping allows a switch to “listen to” theIGMP conversation between hosts and multicast routers.

  • IGMP Snooping provides a way to forward traffic through specific ports.

  • Maintains an IGMP table

  • Multicast data packets are forwarded only to group members and multicast routers


Msan kurs eye networks 24 og 25 oktober

Not a

Receiver

Receiver

Receiver

Receiver

IGMP Snooping Inactivate

All hosts connected with this

switch will receive traffic!

IGMP Router

Switch without IGMP Snooping


Msan kurs eye networks 24 og 25 oktober

Not a

Receiver

Receiver

Receiver

Receiver

IGMP Snooping Activate

Specific hosts connected with this

switch will receive traffic!

IGMP Router

Switch with IGMP Snooping


Msan kurs eye networks 24 og 25 oktober

IGMP Snooping Procedure

Leave Message

Report Message

  • Host sends a with specific GDA (Group Destination Address) it wants to join in.

  • Switch a GDA MAC Address of the associated ports in the MAC Filtering Database.

  • Next time the multicast traffic will be to the ports associated with this GDA MAC address regarding to the Filtering Database.

Removes

Adds

Forwarded

Dropped


Msan kurs eye networks 24 og 25 oktober

IGMP Proxy

  • IES-5000 with IGMP proxy enabled could replace IGMP router in a simple tree topology

  • IGMP proxy could help to reduce load on uplink IGMP router


Msan kurs eye networks 24 og 25 oktober

IGMP Snooping vs IGMP Proxy(1)

IGMP

router

Video server

MulticastTraffic

Report/Leave

Enable IGMP Snooping

Not a Receiver

Receiver

Receiver

Receiver


Msan kurs eye networks 24 og 25 oktober

IGMP Snooping vs IGMP Proxy(2)

IGMP

router

Video

server

MulticastTraffic

Report/Leave

Enable IGMP Proxy

Not a Receiver

Receiver

Receiver

Receiver


Msan kurs eye networks 24 og 25 oktober

Multicast VLAN


Msan kurs eye networks 24 og 25 oktober

MVLAN

  • Multicast VLAN

  • It allows the single multicast VLAN to be shared in the network while subscribers remain in separate VLANs

  • MVR(Multicast VLAN Registration) provides the ability to continuously send multicast streams in the multicast VLAN while isolating the streams from the subscriber VLANs .


Msan kurs eye networks 24 og 25 oktober

IPTV Service without MVR

IGMP Router

single multicast stream20Mb/s eachTotal 120 Mb/s

L2 Switch

CH1, VLAN1

CH1, VLAN2

CH1, VLAN3

CH1, VLAN4

CH1, VLAN5

CH1, VLAN6

CH1, VLAN200


Msan kurs eye networks 24 og 25 oktober

IPTV Service with MVR

IGMP Router

single multicast streamTotal 20Mb/s

L2 Switch

CH1, VLAN1

CH1, VLAN2

CH1, VLAN3

CH1, VLAN4

Always untagged

CH1, VLAN5

CH1, VLAN6

CH1, VLAN200


Msan kurs eye networks 24 og 25 oktober

Functions

  • MVR allows a subscriber to subscribe/unsubscribe to a multicast stream on the multicast VLAN. (Reduce multicast VLAN traffic)

  • Simplifies multicast group management

  • For bandwidth and cost reasons


Msan kurs eye networks 24 og 25 oktober

MVR Setup – VDSL2

MSC1000G> multicast mvlan group set

usage: set <vid> <index> <start-mcast-ip> <end-mcast-ip>

<index> : index, 1~16

<start-mcast-ip> : start of multicast address range

<end-mcast-ip> : end of multicast address range

MSC1000G>


Msan kurs eye networks 24 og 25 oktober

MVR Setup – ADSL2+


Lab vdsl2 mvlan

10.0.0.x/24

VLC

10.0.0.1/24

Lab – VDSL2 MVLAN

IPTV Streamer (UDP: 239.0.0.3

Port 1234)

IGMP Router

Switch

MVLAN = 200 DATA = 12

VDSL2 CPE


Lab vdsl2 mvlan1

10.0.0.x/24

10.0.0.1/24

Lab – VDSL2 MVLAN

IPTV Streamer

IGMP Router

Switch

MVLAN = 100 DATA = 12

0 / 33

ADSL2+ CPE


Msan kurs eye networks 24 og 25 oktober

ACL


Dhcp snoop

DHCP Snoop

  • If a DSLAM enabled DHCP Snooping, it will monitor the DHCP conversation between Server and Clients.

  • It records the IP & MAC info by the DHCP-request & ACK packet transmitted through it.

  • DSLAM maintains an DHCP-snooping table regarding with the ADSL port.

  • Traffic from a PC with statically configured IP, which does not exist in the Snooping table, will not be allowed to pass.

  • You can manually add some static IP addresses, which are trusted.


Configure and cli commands of dhcp snoop

Configure and CLI commands of DHCP snoop

  • Enable/Disable DHCP-snoop

    • “acldhcpsnoop enable/Disable <slot | slot-port>”

  • Show DHCP snooping-table

    • “show dhcp snoop <slot | slot-port>”

  • Statically add trusted IP address

    • “acldhcpsnoop pool set <slot-port> <ip>”


Msan kurs eye networks 24 og 25 oktober

Impulse Noise Monitoring(INM)

  • Defined in standard ITU-T G.993.2 Amendment 2 (2008.2)

  • Provide the measurements to the required INP need on the line

  • INM machine produces 2 histograms:

    • INM Anomaly INP Equivalent (INMAINPEQ)

    • INM Anomaly Inter-Arrival Time (INMAIAT)


Impulse noise monitoring inm

Impulse Noise Monitoring(INM)

  • Block Diagram

Anomalies

Eq. INP

Generation

Eq. INP

&

IAT

Anomalies

Generation

INM

Counters

Indication of

Severely

Degraded

Data Symbols

INS

Impulse Noise

Sensor

Cluster

Indicator

IAT

Generation


Impulse noise monitoring inm1

Impulse Noise Monitoring(INM)

  • INM Parameters


Impulse noise monitoring inm2

Impulse Noise Monitoring(INM)

INM Parameters

  • INM_INPEQ_MODE

    • A value in the range from 0~4.

  • INMCC

    • INM Cluster Continuation value. (0~64 symbols in step of 1)

  • INMAIATO

    • INM Inter Arrival Time Offset for the IAT anomaly generation. (3~511 symbols in step of 1)

  • INMAIATS

    • INM Inter Arrival Time Step for the IAT anomaly generation. (0~7 in step of 1)

  • ISDD (BCM only)

    • ISDD sensitivity. Range from -12.7 to 12.8 dB. (default: 0 dB)


Msan kurs eye networks 24 og 25 oktober

INMAINPEQ

  • 17 indexes

  • Show how much protection the line need to protect a cluster

  • INMCC: the measurement of the cluster to continue over partially-degraded symbols


Msan kurs eye networks 24 og 25 oktober

INMAINPEQ Example


Msan kurs eye networks 24 og 25 oktober

INMAIAT

  • 8 indexes

  • INMIAIAT0

  • INMIAIAT1~6

  • INMIAIAT7


Msan kurs eye networks 24 og 25 oktober

INMAIAT Example


Impulse noise monitoring inm3

Impulse Noise Monitoring(INM)

INM Counters


G 998 4 improved impulse noise protection

G.998.4 Improved Impulse Noise Protection

  • Comparison between Interleaving and G.inp

    • Interleaving

    • G. 933.2

    • Retransmission Model

    • Advantages

  • How to Setup

  • Status and Counter

  • Performance


G 998 4 improved impulse noise protection1

G.998.4 Improved Impulse Noise Protection

  • Interleaving


G 998 4 improved impulse noise protection2

G.998.4 Improved Impulse Noise Protection

  • G. 933. 2


G 998 4 improved impulse noise protection3

G.998.4 Improved Impulse Noise Protection

  • Retransmission Model


G 998 4 improved impulse noise protection4

G.998.4 Improved Impulse Noise Protection

  • G.INP


G 998 4 improved impulse noise protection5

G.998.4 Improved Impulse Noise Protection

Advantages

  • In comparison with standard interleaving, this retransmission scheme offers several key advantages:

    • Up to ten times higher impulse noise resilience

    • Higher available bit rate

    • Lower end-to-end delay

    • Simplified access to network provisioning

    • Much lower residual bit error rate (BER)

    • No error propagation

    • No overbooking of noise margin and impulse noise protection


G 998 4 improved impulse noise protection6

G.998.4 Improved Impulse Noise Protection


Sos roc

SOS/ROC

OLR types:

  • type 1 (Bit Swapping)

  • type 2 Further study

  • type 3 (SRA)

  • type 4 (SOS)


Sos roc overview

SOS/ROC - overview


Sos roc1

SOS/ROC

  • Inferior with Bit Swap

    • Can’t bit swap when suffer the noise with wide frequency noise.

  • Inferior with SRA

    • Need exchange Bit allocate and Gain

    • 4096 tones need 8KB

    • EOC didn’t robust and need longer time to exchange

    • Increase Tx power also increase the noise


Sos roc2

SOS/ROC

  • SOS provides the receiver rapidly perform a bit loading reduction

  • Modems may define a number of SOS tone groups in us/ds

  • An SOS request reduces the bit loading on all tones in a group by the same number of bits


Sos overview

SOS overview

SOS overview

  • SOS allows the receiver to rapidly perform a bit loading reduction

  • Modems may define a number of SOS tone groups in us/ds

  • An SOS request reduces the bit loading on all tones in a group by the same number of bits


Sos triggering criteria

SOS triggering criteria

  • SOS triggering criteria are enabled(SOS-TIME ≠ 0)

  • The percentage of tones in the MEDLEY SET that are persistently degraded throughout the time window SOS-TIME exceeds SOS-NTONES

  • Count of normalized CRC anomalies throughout the same time window SOS-TIME exceeds SOS-CRC


Sos triggering criteria cont

SOS triggering criteria – cont.

  • Send either an SOS request or an SRA request if the number of degraded tones is ≤ 128 and the message length of the SRA request has a duration less than 100 ms

  • Send an SOS request if the number of degraded tones > 128 or if the message length of the SRA request has a duration more than 100 ms


Sos roc3

SOS/ROC


Sos roc4

SOS/ROC


Dsl troubleshooting

DSL Troubleshooting


Hlog for a stable line 1 3

HLOG for a stable Line(1/3)

Uptime 4 days VDSL 17a profile


Hlog for a stable line 2 3

HLOG for a stable Line(2/3)

Uptime 21 hours VDSL 8b profile


Hlog for a stable line 3 3

HLOG for a stable Line(3/3)

Uptime 4 days VDSL 17a profile


Hlog for an unstable line 1 2

HLOG for an unstable Line(1/2)


Msan kurs eye networks 24 og 25 oktober

HLOG for an unstable Line(2/2)


Msan kurs eye networks 24 og 25 oktober

Q & A


Msan kurs eye networks 24 og 25 oktober

Thank you!

Anders [email protected]


  • Login