Optical Character Recognition: Using the Ullman Algorithm for Graphical Matching Iddo Aviram. OCR a Brief Review.
Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.
Optical Character Recognition:Using the Ullman Algorithm for Graphical MatchingIddoAviram
Decision Making
Fourier Transforms
Expert Systems
Topology
Machine Learning
Pattern Matching
Neural Networks
Optimization Problems
Differential Geometry
Computer Vision
נדלן בפתח תקווה:
(למעלה:
מתוך yad1.co.il,
2012
למטה:
מתוך ה"חבצלת"
1912)
גרסה מוקדמת ל"שיר כאב" + "שיר מים רבים", מאיר אריאל, סוף שנות ה70
כתובת על חרס (אוסטרקון) חורבת עוזה תקופת הברזל II, המאה ה7 לפני הספירה דיו על חרס רשות העתיקות
“אֹמֶר למלך אֱמֹר לְבִלְבֵּל: הֲשָלֹם אַתָּ? והִבְרַכְתִּךָ לְקוֹס. וְעַתָּ תֵּן אֶת הָאֹכֶל אֲשֶר עִמַּד אֲחִאִמֹּה [ ] וְהֵרִם ע[ז]אל עַל מִזְ[בַּח קוֹס פֶּן יֶ]חְמַר הָאֹכֶל.”
Graphical matching
Graphical modeling
1G1H,2G3H,3G2H.
(There are additional isomorphic correspondences).
CLIQUE ≤P Subgraph Isomorphism
Isomorphic Correspondence
Permutation Matrix




M’=
F=
F~M’
Isomorphic Correspondence
Permutation Matrix
~




Isomorphism criterion:
M’=
F=
iff is isomorphic to H, with a correspondence F~M’.
F~M’
Since is a symmetric matrix
Since M’ is an orthonormal matrix, thus =I
Isomorphism criterion:
iff is isomorphic to H, with a correspondence F~M’.
Isomorphic Correspondence
Permutation Matrix
~
1G1H
2G3H
3G2H
4Gφ
Subgraph isomorphism criterion:
M’=
F=
iff G is subgraph isomorphic to H, with a correspondence F~rectangularM’.
x  that satisfies the subgraph isomorphism criterion.
(The set of all M*s) (The set of all M’s) . During the
enumeration, we check the isomorphism criterion over each
candidate. If a candidate satisfies the criterion, we will return
‘yes’. If we would not find such a candidate, we will return ‘no’.
Root  M(0)
Inner Nodes – Ms
Leaves – M’s
(The set of all M*s) (The set of all M’s)