Recreating the early universe at the lhc l.jpg
This presentation is the property of its rightful owner.
Sponsored Links
1 / 43

Recreating the Early Universe at the LHC PowerPoint PPT Presentation


  • 92 Views
  • Uploaded on
  • Presentation posted in: General

Recreating the Early Universe at the LHC. King Edward’s School, Bath. Particle Physics. Particle physics aims to answer the BIG questions about the Universe by studying space and matter at its smallest level

Download Presentation

Recreating the Early Universe at the LHC

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Recreating the early universe at the lhc l.jpg

Recreating the Early Universe at the LHC

King Edward’s School, Bath


Slide2 l.jpg

Particle Physics

  • Particle physics aims to answer the BIG questions about the Universe by studying space and matter at its smallest level

  • If a helium atom was the size of a large city, each proton and neutron would be the size of a person, and each quark and electron would be smaller than a tiny freckle.


The standard model ingredients for a universe l.jpg

The Standard Model: “Ingredients for a Universe”

Fundamental forces

Fundamental particles

How can scientists probe matter at subatomic level?


Particle accelerator a k a the particle smasher l.jpg

Particle Acceleratora.k.a. the Particle Smasher

  • A particle smasher accelerates particles to high speeds and collides them.

  • The particles then decay into subatomic parts and emit radiation.

  • Their paths are detected


Cern european organisation for nuclear research l.jpg

CERN – European Organisation for Nuclear Research

First experiments carried out at CERN concerned the inside of the atom – hence organisation for ‘Nuclear’ Research

2,500 people work at CERN. However, thousands more scientists across the globe are connected to research being carried out here.

Revolutionary technology has been created at CERN - The Web was invented at CERN in 1990

The LHC will be switched on for the first time in May 2008!


Recreating the early universe why l.jpg

Recreating the early Universe: Why?

  • Scientific curiosity – Answering questions about Life, the Universe and Everything!

  • Scientific ambition – how far can experimental work take us?

  • Technology developed for the LHC project could have spin-offs in medicine, computing and many other fields.

  • Develop a Grand Unified Theory explaining the workings of the universe


Slide7 l.jpg

Mass-discovery of sub-atomic particles

Anaxagoras

(500-428 BC)

Empedocles

(490-430 BC)

Democritus

(470-380 BC)

Dalton

(1766-1844)

Thomson

(1856-1940)

Planck

(1858-1947)

Rutherford

(1871-1937)

Einstein

(1879-1955)

Heisenberg

(1901-1976)

Stoney

(1826-1911)


Anaxagoras of clazomenae l.jpg

0 AD

1000 AD

Present

Day

Anaxagoras of Clazomenae

Widely recognised as the first major Greek philosopher come scientist.

“There is no smallest among the small and no largest among the large, but always something still smaller and still larger”


Empedocles of acragas l.jpg

1000 AD

0 AD

Present

Day

Empedocles of Acragas

Held the belief that all existence consisted of 4 elements.


Democritus of abdera l.jpg

1000 AD

0 AD

Present

Day

Democritus of Abdera

An advocate of the ‘atomist doctrine’

  • All matter is made up of indivisible particles (atoms) in a great void.

  • Atoms are infinite in number and are perfectly solid.

“Nothing exists except atoms and empty space; everything else is opinion.”


John dalton l.jpg

0 AD

1000 AD

Present

Day

John Dalton

  • Experimentally deduced the existence of atoms through studying gases.

  • Proposed a similar but refined version of Democritus’ atomic theory.


Slide12 l.jpg

Mass-discovery of sub-atomic particles

Anaxagoras

(500-428 BC)

Empedocles

(490-430 BC)

Democritus

(470-380 BC)

Dalton

(1766-1844)

Thomson

(1856-1940)

Planck

(1858-1947)

Rutherford

(1871-1937)

Einstein

(1879-1955)

Heisenberg

(1901-1976)

Stoney

(1826-1911)


George stoney l.jpg

0 AD

1000 AD

Present

Day

George Stoney

  • The first to conceive the existence of particles of electricity.

  • Accurately calculated the electron’s mass.


Joseph thomson l.jpg

0 AD

1000 AD

Present

Day

Joseph Thomson

  • Proved the existence of electrons by studying cathode-ray tubes.

  • Measured its size and charge


Max planck l.jpg

0 AD

1000 AD

Present

Day

Max Planck

  • Founding father of Quantum Theory.

  • The Planck constant, ħ (h-bar), is a fundamental physical constant used in quantum mechanics.

~ 6.626 × 10-34 joule-seconds


Slide16 l.jpg

Mass-discovery of sub-atomic particles

Anaxagoras

(500-428 BC)

Empedocles

(490-430 BC)

Democritus

(470-380 BC)

Dalton

(1766-1844)

Thomson

(1856-1940)

Planck

(1858-1947)

Rutherford

(1871-1937)

Einstein

(1879-1955)

Heisenberg

(1901-1976)

Stoney

(1826-1911)


Ernest rutherford l.jpg

0 AD

1000 AD

Present

Day

Ernest Rutherford

  • Introduced the concept of an atomic nucleus and experimentally proved its existence.


Albert einstein l.jpg

0 AD

1000 AD

Present

Day

Albert Einstein

  • Introduced the concept of photons, leading to the modern view of wave-particle duality in light.

  • Proved that nothing can reach the speed of light (E = mc2), or even catch up with it.


Werner heisenberg l.jpg

0 AD

1000 AD

Present

Day

Werner Heisenberg

  • Developed quantum mechanics irrevocably with his Uncertainty Principle:

- It is impossible to locate both the position and the momentum of a particle with precision.

- Probability distributions must be used to estimate these factors.


Slide20 l.jpg

Mass-discovery of sub-atomic particles

Anaxagoras

(500-428 BC)

Empedocles

(490-430 BC)

Democritus

(470-380 BC)

Dalton

(1766-1844)

Thomson

(1856-1940)

Planck

(1858-1947)

Rutherford

(1871-1937)

Einstein

(1879-1955)

Heisenberg

(1901-1976)

Stoney

(1826-1911)


Current knowledge l.jpg

Current Knowledge


The big bang l.jpg

The Big Bang

  • This occurred about 14 billion years ago

  • The universe began from a miniscule point

  • The fundamental forces were combined at this stage


The hubble telescope l.jpg

The Hubble Telescope


Gravity l.jpg

Gravity

  • Why is gravity so much weaker than the other fundamental forces?

  • Are extra dimensions the answer?


Particle acceleration l.jpg

Particle acceleration

A step-by-step guide


Getting the energy l.jpg

Getting the Energy

Electrons slow down as they travel through the Klystron, emitting microwaves as their speed varies.


2 particle generation l.jpg

2. Particle generation

Particles are knocked from their atoms using lasers or electron guns.


3 acceleration l.jpg

3. Acceleration

Particles accelerated by the alternating field, with the cavity walls shielding from the decelerating effects of the microwaves.


4 aiming the particles l.jpg

4. Aiming the particles

The magnets varyingly attract and repel the particles extremely quickly, with the effect that they remain travelling in a straight line.


5 the collision l.jpg

5. The Collision

The two groups of particles collide. The very high energy of the collision is such that the particles smash apart in to even smaller sub-particles, quarks in our case.

ν

μ-

π


6 detecting the particles l.jpg

6. Detecting the particles

Any charged or high energy particles will ionise atoms they come into contact with, and we can detect the trails of ions these particles leave behind them, e.g. with a cloud or bubble chamber.


Cloud and bubble chambers l.jpg

Cloud and Bubble chambers

The particles ionise the atoms they travel past, which in turn attract the particles which visibly change their state, allowing us to see the trails of the particles.


Seeing different particles l.jpg

‘Seeing’ different particles

The particles curve different ways, at varying amounts and velocities. Analysing these variables allow us to work out what kind of particle it is.


What are we looking for l.jpg

What are we looking for?

  • Standard model

  • Higgs Boson

  • Other particles:

    • Strangelets

    • Micro black holes

    • Magnetic monopoles

    • Supersymmetric particles


Standard model l.jpg

Standard Model

  • It predicts that one more particle is to be discovered, the Higgs Boson.

  • By completing the standard model, some physicists hope to extend it into a ‘theory of everything’.


Higgs boson l.jpg

Higgs Boson

  • It would provide the mechanism by which particles acquire mass.

  • Accelerators have not produced a Higgs boson.

  • In order for physicists to develop their understanding of the matter, there needs to be progress in the search for the Higgs boson.


Other particles l.jpg

Other Particles

  • Other theorized particles may be produced at the LHC, and searches for some of these have been planned.

  • Some examples of these particles are:

    • Strangelets

    • Micro black holes

    • Magnetic monopoles

    • Supersymmetric particles


Where will it lead l.jpg

Where will it lead?

  • Grand Unified Theory

  • Why is Gravity So ‘Weak’?

  • Technological Developments

  • International Linear Collider


Grand unified theory l.jpg

Grand Unified Theory

  • Physicists have linked two of the four fundamental forces with electroweak theory (in 1979).

  • Grand unification theories (GUTs) have tried to link a strong force to these two forces.

  • The creation of a GUT would be a breakthrough in particle physics.


Why is gravity so weak l.jpg

Why is Gravity So ‘Weak’?

  • The Higgs boson may help to explain why gravity is so much weaker than the other three fundamental forces.

  • By developing a greater understanding of where the fundamental forces originated from, physicists hope to understand how and why they differ.


Technological developments l.jpg

Technological Developments

  • The creation of the LHC has led to many technological developments, as new equipment is needed to fulfil functions that have not been necessary before.

  • Examples include:

    • Positron emission tomography (PET)

      • A nuclear imaging technique used in medicine to create a 3D image of functional processes in the body

      • PET cameras were first used in CERN in the 1970s


Technological developments42 l.jpg

Technological Developments

  • World Wide Web

    • Created by Sir Tim Berners-Lee, in 1989

    • At that time he was working at CERN and used the service to share information with other academics

  • The GRID

    • A service used to share computer power and data storage capacity over the Internet

    • The data will be produced at about 10 Petabytes a year.


International linear collider ilc l.jpg

International Linear Collider (ILC)

  • The ILC is a proposed electron-positron collider, which will work with the LHC, to provide more precision and help discover more.

  • They will work together to understand particle physics beyond the standard model.


  • Login