1 / 4

第八章 矩阵特征值计算 /* Chapter 8 Matrix Eigenvalue Problems */

第八章 矩阵特征值计算 /* Chapter 8 Matrix Eigenvalue Problems */. 计算矩阵的主特征根及对应的特征向量. 条件: A 有特征根 |  1 | > |  2 |  …  |  n |  0 , 对应 n 个线性无关的特征向量. 思路: 从任意 出发. 这是 A 关于  1 的近似 特征向量.  原始幂法. Why in the earth do I want to know that?.

hubert
Download Presentation

第八章 矩阵特征值计算 /* Chapter 8 Matrix Eigenvalue Problems */

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 第八章 矩阵特征值计算 /* Chapter 8 Matrix Eigenvalue Problems*/

  2. 计算矩阵的主特征根及对应的特征向量 条件:A 有特征根 |1| > |2|  …  |n|  0,对应n个线性无关的特征向量 思路:从任意 出发 这是A关于1的近似 特征向量  原始幂法 Why in the earth do I want to know that? That is the eigenvalue with the largest magnitude. Don’t you have to compute the spectral radius from time to time? Wait a second, what does that dominant eigenvaluemean? | i / 1 | < 1 当k充分大时,有 … … …

  3. 为避免大数出现,需将迭代向量规范化,即每一步先保证 ,再代入下一步迭代。一般用 。 记: 则有: 引入矩阵 希望 | 2 / 1 |越小越好。  规范化 /* normalization */

  4. Ch.5 Power Method –Inverse Power Method 1 1 1 >  … 若A 有| 1 |  | 2 |  … > |n |,则 A1 有 对应同样一组特征向量。 l l l - 1 n n 1 A1 的主特征根 A的绝对值最小的特征根 Q: How must we compute in every step? A: Solve a linear system with A factorized. 思路  反幂法/* Inverse Power Method */ 若知道某一特征根 i的大致位置 p,即对任意 j i有|i  p | << |j  p | ,并且如果 (A pI)1存在,则可以用反幂法求(A pI)1的主特征根 1/(i  p) ,收敛将非常快。

More Related