1 / 13

Lecture Objectives:

Lecture Objectives:. Finish with major ES software Introduce HW 4. Characteristic parameters. Conduction (and accumulation) solution method finite dif (explicit, implicit), response functions Time steps Meteorological data Radiation and convection models (extern. & intern.)

howie
Download Presentation

Lecture Objectives:

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture Objectives: • Finish with major ES software • Introduce HW 4

  2. Characteristic parameters • Conduction (and accumulation) solution method • finite dif (explicit, implicit), response functions • Time steps • Meteorological data • Radiation and convection models (extern. & intern.) • Windows and shading • Infiltration models • Conduction to the ground • HVAC and control models

  3. ES programs • Large variety • http://www.eere.energy.gov/buildings/tools_directory • DOE2 • eQUEST (DOE2) • BLAST • ESPr • TRNSYS • EnergyPlus (DOE2 & BLAST)

  4. eQUEST (DOE2)US Department of Energy & California utility customers • eQUEST - interface for the DOE-2 solver • DOE-2 - one of the most widely used ES program - recognized as the industry standard • eQUEST very user friendly interface • Good for life-cycle cost and parametric analyses • Not very large capabilities for modeling of different HVAC systems • Many simplified models • Certain limitations related to research application - no capabilities for detailed modeling

  5. ESPrUniversity of Strathclyde - Glasgow, Scotland, UK • Detailed models – Research program • Use finite difference method for conduction • Simulate actual physical systems • Enable integrated performance assessments Includes daylight utilization, natural ventilation, airflow modeling CFD, various HVAC and control models • Detail model – require highly educated users • Primarily for use with UNIX operating systems

  6. ESPrUniversity of Strathclyde - Glasgow, Scotland, UK • Detailed models – Research program

  7. TRNSYSSolar Energy Lab - University of Wisconsin • Modular system approach • One of the most flexible tools available • A library of components • Various building models including HVAC • Specialized for renewable energy and emerging technologies • User must provide detailed information about the building and systems • Not free

  8. Component-based simulation programs - Trnsys

  9. EnergyPlusU S Department of Energy • Newest generation building energy simulation program ( BLAST + DOE-2) • Accurate and detailed • Complex modeling capabilities • Large variety of HVAC models • Some integration wit the airflow programs Zonal models and CFD • Detail model – require highly educated users • Very modest interface • Third party interface – very costly

  10. EnergyPlus

  11. Software comparison(BESTest)

  12. HW 4Modeling based on Measured Data Location: Syracuse

  13. HW4Empirical model: Q=f(DBT)

More Related