This presentation is the property of its rightful owner.
Sponsored Links
1 / 61

第一章 线性规划与单纯形法 PowerPoint PPT Presentation


  • 81 Views
  • Uploaded on
  • Presentation posted in: General

第一节 线性规划的基本概念 第二节 线性规划的标准形式和解的性质 第三节 单纯形法 第四节 人工变量法 第五节 线性规划应用举例. 第一章 线性规划与单纯形法. 通过本章的学习,要求学生掌握线性规划的图解法,深刻理解单纯形法的解题思路,熟练掌握其运算步骤,并能在实际问题中加以运用。. 本章学习目的和要求. 1 .已有一定数量的人力、物力、财力资源,研究如何充分合理地使用才能使完成的任务量最大。(如:利润、产值等最大。 maximum ) 2 .当一项任务量确定以后,研究如何统筹安排,才能使完成任务耗费的资源量为最小。(如:成本最小。 minimum ). 主要研究目的.

Download Presentation

第一章 线性规划与单纯形法

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


4246977


4246977


4246977

1 maximum

2minimum


4246977

1-1 PQABC1-1


4246977

11

PQ


4246977

PQx1x2


4246977

A

B

20

10

40

0

0

20

/

2

2

3

1-2 3AB1-2

AB108


X 1 x 2 x 3

A

B

20

10

40

0

0

20

/

2

2

3

x1x2x3


4246977

1-3 A1A23040B1B2B32025181-3/

B1

B2

B3

A1

A2

2

4

3

6

5

3


A i b j x ij i 1 2 j 1 2 3

AiBjxiji=12j=123


4246977

1x1xn

2

3

Linear ProgrammingLP


4246977


4246977

1-1

1-2

1-3

x1x2xncjbi1-31-2aijx1xnRx1xn


4246977


4246977

X=x1x2xnT

C=c1c2cn

b=b1b2bmT

A=aijmn

Pj=a1ja2jamjT


4246977

n=2LP

1.

2.


4246977

1-4


4246977

x2

5

l2

4

Q4

Q3

l3

3

Q2

2

l1

1

Q1

0

1

2

3

4

5

6

x1

1-1

1R

ROQ1Q2Q3Q4


2 z z

zz=2x1+5x2x2=2/5x1+z/52/5 l zx2z/5lRzl2/5lRQ3zQ3

2ZZ


4246977

Q3l1l3

3

x1=2x2=3z=2253=19PQ2319ACB4


4246977

1.

2.ZmaxZ=2X1+4X2,Q2Q3

Q323Q2

x1=3x2=5/2

Q2Q3

X1+1X201X1+1X201


4246977

34X212Z

3.


4246977

4.

x2

B

l2

l1

A

D

4

l

C

O

2

x1

34


4246977

1.

2.

3.

4.ZZZ


4246977

LP

b1b2bm0


4246977

1.

2.


4246977

LP

1

z1=z

2bi<01

3

4xjxj0xj=xjxj0xjxj=xjxjxj0xj0


4246977

x3x4x5

LP


1 9 lp

1-9 LP


4246977

LP

X=x1x2xnTC=c1c2cnb=b1b2bmTA=aijmn

XCbAPj=a1ja2jamjTxjAjA=P1P2Pn


4246977

AmAm

BAmB

B=

0

m

0


4246977

AP3P4P5x3x4x5P3P4P5x1=x2=0X=0082012T


4246977

B

1

2

3

4

5

6

7

8

9

10

P1P2P3

P1P2P4

P1P2P5

P1P3P4

P1P3P5

P1P4P5

P2P3P4

P2P3P5

P2P4P5

P3P4P5

(14/53-4/500)T

(23040)T

(35/2002)T

(404012)T

(800-2012)T

(032140)T

(0-10-120-28)T

(04012-4)T

(0082012)T

Q3

Q2

Q1

Q4

O

1-4


4246977

1R

2XX

3

LP


4246977


4246977

x3x4x5X1=(0,0,8,20,12)Tz1=0

1


4246977

z=2x1+5x2x1x2zx2x2zx2x1

x2min8/220/212/4=3

x5=0x5


4246977

1x2,x3,x4

2

X2=(0,3,2,14,0)Tz2=53=1515


4246977

2x2=3 x5z

z=2x1+5x2=2x1+53x5=2x1x5+15

x1x1x50

x1min2/114/5=2

x1=2x3=0x32x1x2x4

X3=(2,3,0,4,0)Tzz3=22+53=19

3


4246977

3x1=2x3+ x52

z=22x3+x5x5+15=2x3x5+19

z19X=X3z=19X3z19


4246977

1.


4246977

b1bm0X1=(b1,b2,,bm,0,,0)T

i=12m


4246977

0

xjjxjzj>0xj


4246977

1-5

2.


4246977

Xxi=bii=1mxj=0

CBb

xjjcjCBxj


4246977

1

X1j0X1

3.


4246977

2

xk


4246977

3

xk

xl


4246977

4

alk10l1/alklaik/alkii=12mil


4246977

LP


4246977

LP


4246977

1.

X1

1j0xk02j<0


4246977

LP


4246977

X1xkk>0aik0i=12mxk

2.


3 min z

z1=zmax z1

j0

xk

3. min z


4246977


4246977

M

1-15 LP


4246977

x4x5LPP1

x6x7


4246977

P1

P2


4246977

X=(x1x2x3x4x5)TXA=(x6x7)T

1P1X*X*XA*=0P2

2P2X*XA*=0X*P1P2XA*0P1


  • Login