1 / 20

Gyűrűk

Gyűrűk. Definíció. Az ( R , +, ·) algebrai struktúra gyűrű , ha + és · R- en binér műveletek, valamint. I. ( R , +) Abel-csoport ,. II. ( R , ·) félcsoport, és. III. teljesül mindkét oldalról a disztributivitás, vagyis a(b+c)=ab+ac, (b+c)a=ba+ca minden a, b, c  R esetén.

hope
Download Presentation

Gyűrűk

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Gyűrűk Definíció. Az (R, +, ·) algebrai struktúra gyűrű, ha + és · R-en binér műveletek, valamint I.(R, +) Abel-csoport, II. (R, ·) félcsoport, és III. teljesül mindkét oldalról a disztributivitás, vagyis a(b+c)=ab+ac, (b+c)a=ba+ca minden a, b, c R esetén. Kommutatív a gyűrű, ha a szorzás kommutatív. Az additív csoport egységelemét a gyűrűnullelemé-nek nevezzük és 0-val jelöljük. Egységelemes a gyűrű, ha a szorzásra vonatkozóan van egységelem (amit e-vel jelölünk).

  2. Példák Jelölés: R gyűrű R*=R\{0} • (Z,+, . ), (Q,+, . ), (R,+, . ), (C,+, . ). • (Páros számok, +, .) • nincs egységelem • 3. nn-es mátrixok a mátrixösszeadásra és mátrixszorzásra vonatkozóan, vagyis (Fn, +, )

  3. Példa. 1. Legyen mN, és vegyük a mod m maradékosztá-lyok halmazát. A műveleteket így definiáljuk: JelöljükZm-nel ezt a struktúrát. A (Zm, +, ·) struktúra kommutatív, egységelemes gyűrű.

  4. Nullgyűrű: egyetlen elemből áll (nullelem). Zérógyűrű: ha tetszőleges két elem szorzata a nullelem. 29. Tétel. Legyen 0 az R gyűrű nulleleme. Ekkora0 = 0a = 0 minden a  R esetén. Bizonyítás. a(0+0) = a0. a0 + a0 = a0 + 0. a0 = 0.

  5. 30. Tétel. Legyen R gyűrű, és a, b R. Az a elem additív inverzét (az összeadásra vonatkozó inverzét) jelöljük –a-val. Ekkor –(ab) = (–a)b = a(–b). Bizonyítás. ab additív inverze létezik, mert (R, +) csoport.  ab + (-(ab)) = 0, valamint ab + (-a)b = (a + (-a))b = 0b = 0.  –(ab) = (–a)b.

  6. Következmény. Érvényben van az úgynevezett előjelszabály: (–a)(–b) = ab.

  7. Példa Legyen m=12, a=3 és b=4. Ekkor ab0 (mod 12) Z12-ben: A gyűrű nulleleme előállhat bizonyos esetben olyan elemek szorzataként is, amelyek egyike sem nulla. Definíció. Az R gyűrűben a  Rbal oldali nullosztó, ha a  0 és létezik b  0, b R, melyre ab = 0. Hasonlóan definiáljuk a jobb oldali nullosztót. a és bnullosztó párok.

  8. 31. Tétel. Legyen a az R gyűrű eleme, a  0. ab = ac b = c akkor és csak akkor teljesül minden b, c R ese-tén ha anem bal oldali nullosztó. Bizonyítás. 1.Tfha  0, a nem bal oldali nullosztó és ab = ac. (ac) mindkét oldalhoz, ab + ((ac)) = 0. előző Tétel  ab + (a(c)) = a(b + (c)) = 0. feltétel  b + (c) = 0  b = c.

  9. 2.Tfha bal oldali nullosztó, tehát a  0 és létezik b  0, mellyel ab = 0. tetszőleges cR-re ac = ac. Adjuk a jobb oldalhoz az ab = 0-t. ac = ac + ab, disztributivitás  ac = a(c+b). b 0  c  c + b.

  10. R gyűrű, aR, és nN. na jelentsen egy n tagú összeget, melynek minden tagja a. na=a + … + a. Az na nem gyűrűbeli szorzást jelöl. Tekintsük a mod 5 vett maradékosztályok gyűrűjét, Z5-öt. mert 530 (mod 5). Ez minden Z5 esetén teljesül, és ha akkor ennél kisebb természetes szám nincs, amelyik hasonló tulajdonságokkal bírna. Az 5 nem gyűrűbeli szorzás, 5 Z5, (Z5 maradékosztályok halmaza.)

  11. 32. Tétel. Ha az R gyűrű legalább két elemű, nullosztómentes, akkor (R, +)-ban a 0-tól különböző elemek rendje megegyezik. Ez a közös rend vagy végtelen, vagy egy p prímszám. Jelölés. Előző esetben a gyűrűt nulla-karakterisztikájúnak ( char R = 0), az utóbbiban p-karakterisztikájúnak ( char R = p ) nevezzük. Bizonyítás. 1. Van végesrendű elem  mindegyik elem rendje ugyanekkora. a  R*:|a| = na N. naa = 0. Tetszőleges b  R* -re: na(ab) = ab+…+ab = (a+…+a)b = (naa)b = 0b = 0. és na(ab) = a(b+…+b) = a(nab)  nab = 0.

  12.  |b||a| = na . |b||a| hasonlóan látható be.  |b| = |a| = na . 2. Tfh nem létezik nem nulla véges rendű elem. Minden nem nulla elem rendje végtelen. 3. Belátjuk, hogy ha ez a közös rend véges, akkor prím Tfh a közös rend n = 1 véges szám.  0 = 1a = a  a = 0.

  13. Tfh a közös rend n összetett véges szám. n = kl és 1 < k < n, 1 < l < n, na = (kl)a = a + ...+ a + ... + a+ ... + a = l(ka) = 0. k db a k db a l-szer 1. eset: ka 0.  |ka| = n és |ka|l < n. 2. eset: ka =0.  |a| k<n és |a| = n.  n prím. Az előző példában Z5 nullosztómentes, mindegyik nem nulla elem rendje 5, char Z5=5.

  14. Az előző tételben nullosztómentes gyűrűről volt szó. Előfordulhat azonban, hogy egyes nem nullosztómentes gyűrűkben hasonlóan lehet értelmezni a karakterisztikát. Definíció. Egy olyan R gyűrűt, amelyben a2=a minden aR esetén teljesül, Boole-gyűrűnek nevezünk. 33. tétel. Minden R Boole-gyűrűben char R=2, és R kommutatív.

  15. Példa. Legyen H egy tetszőleges halmaz, és R a H részhal-mazainak halmaza. Tekintsük az (R, , ) struktúrát, ahol  a szimmetrikus differenciát,  pedig a metszetet jelöli. ----------------------------------------------------------------- • R gyűrű,  a nulleleme • A H -ra AA = A2 = A teljesül •  Boole-gyűrű • A -raA  A = ,  char R = 2, • R kommutatív • R nem nullosztómentes: • diszjunkt halmazokra: AB = 

  16. Definíció. Az R gyűrű test, ha 1. R kommutatív, 2. (R*, · ) csoport. 34. Tétel. mN esetén Zmakkor és csak akkor test, ha m prím.

  17. Bizonyítás. Tudjuk, hogy Zm kommutatív gyűrű és (Zm*, · ) akkor és csak akkor lesz csoport, ha megoldható.  ax  1 (mod m) megoldását keressük.  megoldás  (a, m) | 1 (a, m) = 1 kell teljesüljön. Ez akkor teljesül minden esetén, ha m prím.

  18. 35. Tétel. Testben nincs nullosztó. Bizonyítás. Tfh indirekte, hogy T test, és van benne nullosztó, pél-dául aT,a0 és létezik bT, b0, melyre ab = 0. T test   a-1 : a-1ab = a-10  b = 0.  Testben nem lehet nullosztó.

  19. Mindig beszélhetünk test karakterisztikájáról. 0 karakterisztikájú test: Q P prím karakterisztikájú test: Zp Definíció. A legalább két elemű, kommutatív, nullosztómentes gyűrűt integritási tartománynak nevezzük. Test integritási tartomány. Vannak olyan integritási tartományok, melyek nem alkotnak testet, pl. Z.

  20. 36. Tétel. Véges integritási tartomány test. Bizonyítás. legyen integritási tartomány. Ha ri (1ik) elemével végigszorozzuk R-et, megkapjuk R minden elemét pontosan egyszer, mert rirj= rirk esetén a nullosztómentességből rj=rk következne. Tehát minden elem legfeljebb egyszer fordulhat elő. R véges   elem egyszer elő is fordul. R-ben az ax=b egyenlet megoldható minden a0 -ra.  R test

More Related