1 / 43

Occupational Biomechanics

Occupational Biomechanics. Hardianto Iridiastadi. Motivation. Physical activities in many occupational settings Dynamics, requiring large muscle groups, large forces Statics, involving smaller muscles, minimal forces MS problems Prevalent (epidemiology data)

holli
Download Presentation

Occupational Biomechanics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Occupational Biomechanics Hardianto Iridiastadi

  2. Motivation • Physical activities in many occupational settings • Dynamics, requiring large muscle groups, large forces • Statics, involving smaller muscles, minimal forces • MS problems • Prevalent (epidemiology data) • Costly (individual, organization, society) • Resulting in poor performance and productivity • Job requirements • Individual variations • Regulations (e.g., ADA, EOE)

  3. Guiding philosophy Job Demand Individual Capacity

  4. Definitions • Biomechanics: • Kinetics: aspekgayadanmomen • Kinematics: aspekgerakantubuh (motion) • Aplikasi: rehabilitasimedik, olahraga, ergonomi • Occupational Biomechanics is a sub-discipline within the general field of biomechanics which studies the physical interaction of workers with their tools, machines and materials so as to enhance workers performance while minimize the risk of musculoskeletal injury.

  5. Definitions • “mechanical behavior of the musculoskeletal (MS) system and component tissues when performing physical work” • Objectives • Minimize MS problems • Improve performance

  6. Cost $$$ ? www.libertymutual.com

  7. Components of the MS System

  8. Anatomy and Biomechanics ANATOMY MECHANICAL PROPERTIES PERFORMANCE FAILURE LIMITS

  9. - mechanical loads - primary - health promoting - simple categories: - mechanical strain - training force, distance, time - acute physiological - well being - complex categories: changes - coping e.g. intensity, power, work, duration, - secondary - detrimental frequency, variability - local in cells and - injuries tissues - atrophy - mental loads - information EXPOSURE RESPONSE EFFECT INDIVIDUAL FACTORS: - inherited - trainable - modified by response and effect Model for Injury Pathogenesis -From Sejersted and Vøllestad (1993) Progress in Fibromyalgia and Myofascial Pain

  10. Applied Biomechanics • Biomechanics of human body • Compare mechanical demands vs. joint/muscle strength • Manual handling evaluations • Ergonomic assessments

  11. Biomechanical Model - Simple • Unknown: • Elbow reactive force • Elbow moment Dari: Chaffin and Andersson (1991) Occupational Biomechanics

  12. Akan dihitung: Force pada otot Biceps (FB) Force pada elbow (FE) External elbow moment (ME) Example ELBOW COM HAND

  13. Steps required • Free Body Diagram • Hitung external moment(s) padasendi (joint) • Hitung net internal moment(s) • Hitung external force(s) padasendi • Hitung net internal force(s) • Evaluasi

  14. Example - solution SME = 0 ME = MLA + MH = (WLA x maLA) + (FH x maH) ME = (-10 x 0.17) + (-180 x 0.35) = -64.7 Nm ME = -ME ME = (FJT x maJT) + (FB x maB) FB = 1294 N (up) External moment Internal moment

  15. Solution (lanjutan) SFE = 0 FE = WLA + FH = -10 + (-180)= -190 N (down) FE = - FE FE = FJT + FB FJT = 190 - 1294 = -1104 N (down) • Kesimpulan, untukmenahansebuahbenda 18 kg dibutuhkan force (bicep) ~1300 N dandihasilkan force ~1100 N padasendi elbow

  16. Evaluasi Populasi • Jika momen pada elbow (ME)= 15.4 Nm, berapa persen populasi yang diprediksi bisa menahan beban ini (asumsi: untuk waktu yang singkat)? Mis: m = 40 Nm; s = 15 Nm z = (y - µ)/σ= (15.4 - 40)/15 = -1.64 Dari distribusi normal: z = -1.64  0.95 Artinya, 95% dari populasi mempunyai kekuatan otot ≥ 15.4 Nm

  17. Ergonomic Controls • Strategi perbaikan kerja • Kurangi D (Demand) • Forces: berat beban • Moment arms: jarak beban ke tubuh, postur, layout kerja • Tingkatkan C (Capacity) • Seleksi pekerja • Hindari dampak beban kerja untuk sendi tubuh yang relatif lemah/ kritis

  18. Model 2: Low-Back Dari Chaffin and Andersson (1991) Occupational Biomechanics

  19. F c.o.m F compression M = external muscle moment F shear a F BW q=90-a F Load Analisis Biomekanika 6 cm M internal M external q=90-a FL5/S1 = FBW + Load

  20. Manual Material Handling

  21. Masalah • Overexertion sebagai sumber biaya MSDs terbesar • Penyebab utama: lifting • Back injury • 20% dari total kelainan MSDs • 30% dari total biaya kompensasi • Total biaya $ ~30 billion per tahun

  22. The Vertebrae

  23. Disc Herniation

  24. Disc Degeneration

  25. Solusi Ergonomik • Evaluasi penanganan material • Perancangan baru sistem penanganan material • Training • Pemilihan karyawan

  26. NIOSH Guides untuk Manual Lifting • Acuan pengangkatan beban secara manual • Beban maksimum 23 kg • Asumsi • Fokus pada L5/S1 vertebral joint • Batas compressive force = 3400 N • Keterbatasan

  27. Recommended Weight Limit (RWL) • RWL = C x 6 multipliers • C = konstanta = 23 kg • Multipliers: • horizontal location (HM) • vertical location (VM) • vertical travel distance (DM) • asymmetry (AM) • frequency (FM) • coupling (CM) • Multipliers ≤ 1 • RWL = 23 kg  HM  VM  DM  AM  FM  CM

  28. AcuanPosisi

  29. Horizontal Multiplier (HM) • HM = (25/H) • H = jarak horizontal (cm) H H

  30. Pengali Vertikal • VM = (1-(0.003|V-75|)) • V = jarakvertikal (cm) V V

  31. Distance Multiplier (DM) • DM = (0.82 +(4.5/D)) • D = jarakperpindahanvertikal (cm)

  32. Asymmetry Multiplier (AM) • AM = (1-(0.0032|A|)) • A = sudutasimetri

  33. Initial load height V≥75 cm Coupling V<75 cm Good 1.0 1.0 Fair .95 1.0 Poor .90 .90 Coupling Multiplier (CM) • LihatTabel

  34. ≤ 1 hour ≤ 2 hour ≤ 8 hour Frequency initial load lifts/min V<75 V≥75 V<75 V≥75 V<75 V≥75 height 0.2 1.00 1.00 0.95 0.95 0.85 0.85 0.5 0.97 0.97 0.92 0.92 0.81 0.81 1 0.94 0.94 0.88 0.88 0.75 0.75 2 0.91 0.91 0.84 0.84 0.65 0.65 3 0.88 0.88 0.79 0.79 0.55 0.55 4 0.84 0.84 0.72 0.72 0.45 0.45 5 0.80 0.80 0.60 0.60 0.35 0.35 6 0.75 0.75 0.50 0.50 0.27 0.27 7 0.70 0.70 0.42 0.42 0.22 0.22 8 0.60 0.60 0.35 0.35 0.18 0.18 9 0.52 0.52 0.30 0.30 0.00 0.15 10 0.45 0.45 0.26 0.26 0.00 0.13 11 0.41 0.41 0.00 0.23 0.00 0.00 12 0.37 0.37 0.00 0.21 0.00 0.00 13 0.00 0.34 0.00 0.00 0.00 0.00 14 0.00 0.31 0.00 0.00 0.00 0.00 15 0.00 0.28 0.00 0.00 0.00 0.00 >15 0.00 0.00 0.00 0.00 0.00 0.00 Frequency Multiplier (FM) (cm) ≤

  35. RWL Analysis • Lift Index = (BebanAktual)/RWL • Interpretasi: • LI < 1 OK • LI > 1 may have increased risk • LI > 3 likely have increased risk

  36. Contoh Awal Akhir H = 13.0 cm H = 41.5 cm V = 13.5 cm V = 89.0 cm A = 0 deg A = 0 deg D = 75.5 cm; F = 1/min; Pegangan = Fair

  37. Calculations HMStart = (25/13) = 1 HMEnd = (25/41.5) = 0.60 VMS = (1-(0.003|13.5-75|) = 0.82 VME = (1-(0.003|89-75|) = 0.96 DM = (0.82+(4.5/75.5)) = 0.88 AMS = AME = (1-(0.0032)(0)) = 1 CMS = [Fair, V<75] = 0.95 CME = [Fair, V≥75] = 1 FM = [1/min, ≤2h, V<75] = 0.88

  38. RWL and LI calculations RWLAwal = 23 kg x 1 x 0.82 x 0.88 x 1 x 0.95 x 0.88 = 13.87 kg RWLAkhir = 23 kg x 0.6 x 0.96 x 0.88 x 1 x 1 x 0.88 = 10.26 kg Jikaberatbebanaktual yang diangkat 22.68 kg: LI = Bebanaktual / RWL = 22.68 / 10.26 = 2.21 Kesimpulan?

  39. Ergonomic Controls • Engineering • Perbaiki cara kerja & sistem kerja • Mesin • alat bantu • metode baru • Administrative • Work scheduling • Work rotation • Worker selection

  40. Teknik Pengangkatan Manual

  41. Typical Manual Handling Tasks • Survey > 25.000 tasks in 2442 industrial locations in the US • Nilai median (Ciriello and Snook, IJIE, 1999, pp. 379-388): • Lift/lower mass = 19 - 20 kg • One lift/lower every 3 and 2 minutes • Hand distance from front of body = 22 cm • Initial push and pull forces = 177 and 222 N • One push/pull every 30 and 23 minutes • Carry mass, distance, and frequency = 20 kg, 2.3 m, and every 2.6 min • Distribusi berat beban (10.000 lifts):

  42. Questions?

More Related