C a r i b i c
Download
1 / 29

C A R I B I C - PowerPoint PPT Presentation


  • 69 Views
  • Uploaded on

C ivil A ircraft for R egular I nvestigation of the atmosphere B ased on an I nstrument C ontainer. C A R I B I C. Luftfrachtcontainer gefüllt mit wissenschaftlichen Instrumenten, eingebaut für einzelne Messflüge 1 – 2 Messflüge pro Monat (24 – 48 Flugstunden)

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' C A R I B I C' - holden


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
C a r i b i c

Civil Aircraft for Regular Investigation of the atmosphere Based on an Instrument Container

C A R I B I C

  • Luftfrachtcontainer gefüllt mit wissenschaftlichen Instrumenten, eingebaut für einzelne Messflüge

  • 1 – 2 Messflüge pro Monat (24 – 48 Flugstunden)

  • 11 beteiligte europäische Institute (Koordination: MPI-C, Mainz)

  • MPI für Chemie, Mainz

  • IMK, Karlsruhe

  • IFT, Leipzig

  • DLR, Oberpfaffenhofen

  • GKSS, Geesthacht

  • Universität Heidelberg

  • UEA, Norwich, UK

  • University Lund, Sweden

  • KNMI, de Bilt, The Netherlands

  • CEA/CNRS, Paris, France

  • Universität Bern, Schweiz



Caribic ii container

PTR-MS

O3

H2O

CARIBIC II Container


>4nm

18-180nm

CARIBIC II

maiden flight

13/14 Dec 2004

Frankfurt - Buenos Aires


Caribic ii status zukunft
CARIBIC II: Status & Zukunft

  • Status

  • Anfang Dezember 2004: Fluggenehmigung Airbus A340 & Container durch LBA

  • 13/14. Dezember: Erstflug nach Buenos Aires/Santiago

  • Logistik vollständig (high-loader, LKW, test equipment etc.)

  • Einlass funktioniert mechanisch & elektrisch

  • Airbus „power management“ erlaubt noch keine Aufwärmphase vor Flug

  • (kleine) Softwareprobleme bei Master PC

  • einige Instrumente noch nicht vollständig funktionsbereit

  • Zukunft

  • Zweitflug: 18/19. Februar 2005 nach Sao Paulo/Santiago (Parallelflug TROCCINOX)

  • Danach 1-2 Messflüge (25-60 h) pro Monat

  • anvisierte Flugziele: Südamerika, Südafrika, Ost Asien, Ostküste Nordamerika

  • 2005: beheben aller technischer Probleme, keine neuen Geräte

  • Veröffentlichungen & Anträge schreiben


Mess-Zelle (p,T const.)

Laser

Sample Detektor

Referenz Detektor

Reiner Absorber

Referenz-Zelle ([c] const.)

Tunable Diode Laser Absorption Spectroscopy (TDLAS)zur Messung von D/H, 17O/16O und 18O/16O in H2O

Christoph Dyroff

Lambert-Beer

σ(ν) Absorptionsquerschnitt

N Molekül Konzentration

L Absorptionlänge

Aufeinander abgestimmt


Erste messspektren bei 1 37 m l 40 cm
Erste Messspektren bei 1.37μm, L~40 cm

0.10 nm


What we can learn from isotope measurements in the atmosphere

central motivation of atmospheric isotope studies is to better understand the budget of the examined trace constituents, i.e. to quantify source/sink strenghts, chemical processing, photolysis rates, transport fluxes etc.

What we can learn from isotope measurements in the atmosphere?

d - notation

e.g. d18O(H2O) = (Rsample / RV-SMOW – 1) * 1000 o/oo

with R = 18O/16O


Isotope fractionation processes
Isotope fractionation processes better understand the budget of the examined trace constituents, i.e. to quantify source/sink strenghts, chemical processing, photolysis rates, transport fluxes etc.

  • Phase transitions e.g. vapour pressure isotope effect

  • Chemical reactions

  • Kinetic fractionation diffusion, transport

  • Photolysis rates

  • (Radioactive decay)


Isotopes measured in the atmosphere

isotope ratio trace gas better understand the budget of the examined trace constituents, i.e. to quantify source/sink strenghts, chemical processing, photolysis rates, transport fluxes etc.

hydrogenD/H (T/H) H2O, CH4, H2

carbon13C/12C (14C/12C) CO2, CH4, CO (C2H6, C3H8, …)

oxygen17O/16O,18O/16O H2O, CO2, CO, N2O, O3 (NO2, …)

nitrogen15N/14N N2O (NH3, NH4, NO2, NO3, …)

(10Be/7Be, 34S/32S)

Isotopes measured in the atmosphere

Standard Mean Ocean Water (SMOW) D/H 155.76 · 10-6

17O/16O 379.9

18O/16O 2005.2

PeeDee Belemnite (PDB)13C/12C 11180

17O/16O 385.9

18O/16O 2067.2

Air (AIR)15N/14N 3676.5


Isotope fractionation effects

solar radiation better understand the budget of the examined trace constituents, i.e. to quantify source/sink strenghts, chemical processing, photolysis rates, transport fluxes etc.

meteorites,

asteriodes,

comets

ablation

+

evaporation

Isotope fractionation effects

CHEMICAL

REACTIONS

stratosphere

PHOTOLYSIS

Tropopause

8 – 16 km

gas-particle

transformation

condensation

+

evaporation

stratospheric

tropospheric

Exchange (STE)

free

troposphere

CHEMICAL

REACTIONS

sedimentation + rainout

boundary layer

1 – 2 km

terrestrial

radiation

volcanism

condensation

+

sublimation

biosphere

mankind

dissolution

condensation

evaporation

effusion

+

deposition

sedimentation

ices


D 17 o d 18 o plot
d better understand the budget of the examined trace constituents, i.e. to quantify source/sink strenghts, chemical processing, photolysis rates, transport fluxes etc.17O – d18O plot


O 3 formation rate coefficient ratios
O better understand the budget of the examined trace constituents, i.e. to quantify source/sink strenghts, chemical processing, photolysis rates, transport fluxes etc.3 formation: rate coefficient ratios


Transfer of isotope anomaly

CO better understand the budget of the examined trace constituents, i.e. to quantify source/sink strenghts, chemical processing, photolysis rates, transport fluxes etc.2

O(1D)

H

H2O

O

OH

HNO3

H2O

„Transfer“ of isotope anomaly

SO42-

S(IV)aq

NMHC

O3

CO

NO

NO2

at ground

O3

N2O

NO3


Processes controlling h 2 o isotopomers

MIF better understand the budget of the examined trace constituents, i.e. to quantify source/sink strenghts, chemical processing, photolysis rates, transport fluxes etc.

dHDO = - (600-800)o/oo

dH218O = - (100-160)o/oo

DH217O = 0o/oo(= d17O – 0.52 * d18O)

ice lofting

MDF

kinetic

fractionation

vapor pressure

isotope effect

Processes controlling H2O isotopomers

30 km

T R A N S P O R T

+ C H E M I S T R Y

CH4 oxidation

H2O  HOx,, Ox

23 km

17 km

8 km

T R A N S P O R T


Isotope fractionation of h 2 o
Isotope fractionation of H better understand the budget of the examined trace constituents, i.e. to quantify source/sink strenghts, chemical processing, photolysis rates, transport fluxes etc.2O

a = 1 – e a fractionation factor

e fractionation

Raleigh fractionation

dRcondensate = a(T) · Rgas Rgas(t) = Rgas(0)·fa-1

vapour pressure istope effect (vpie)

avpie

kinetic fractionation

akin = S(T) / [avpie· D/Di ·(S(T)-1) + 1] S(T) oversaturation


H 2 o isotope observations at ground
H better understand the budget of the examined trace constituents, i.e. to quantify source/sink strenghts, chemical processing, photolysis rates, transport fluxes etc.2O isotope observations at ground

Meteoric Water Line (MWL) (in precipitation)

dD(H2O) = 8.0 ·d18O(H2O) + 8.6 (in per mil)


Iaea wmo network for h 2 o isotope composition in monthly precipitation
IAEA / WMO network better understand the budget of the examined trace constituents, i.e. to quantify source/sink strenghts, chemical processing, photolysis rates, transport fluxes etc.for H2O isotope composition in monthly precipitation


Local mwl in water vapour at heidelberg 1981 2000
Local MWL in better understand the budget of the examined trace constituents, i.e. to quantify source/sink strenghts, chemical processing, photolysis rates, transport fluxes etc.water vapour at Heidelberg 1981-2000


H 2 o isotope observations at ground1
H better understand the budget of the examined trace constituents, i.e. to quantify source/sink strenghts, chemical processing, photolysis rates, transport fluxes etc.2O isotope observations at ground

Meteoric Water Line (MWL) (in precipitation)

dD(H2O) = 8.0 ·d18O(H2O) + 8.6 (in per mil)

Temperature effect

dD(H2O) = 8.0 ·d18O(H2O) + 8.6 (in per mil)


D 18 o h 2 o vs t in water vapour at heidelberg 1981 2000
d better understand the budget of the examined trace constituents, i.e. to quantify source/sink strenghts, chemical processing, photolysis rates, transport fluxes etc.18O(H2O) vs. T in water vapour at Heidelberg 1981-2000


H 2 o isotope observations
H better understand the budget of the examined trace constituents, i.e. to quantify source/sink strenghts, chemical processing, photolysis rates, transport fluxes etc.2O isotope observations

airborne sampling at 50-80°N, DI-IRMS measurement in the laboratory

Zahn, 2001


H 2 o isotope observations1

Kuang et al., GRL, 2003 better understand the budget of the examined trace constituents, i.e. to quantify source/sink strenghts, chemical processing, photolysis rates, transport fluxes etc.

Webster et al., Science, Dec. 2003

H2O isotope observations


Simulated isotope profiles
Simulated Isotope Profiles better understand the budget of the examined trace constituents, i.e. to quantify source/sink strenghts, chemical processing, photolysis rates, transport fluxes etc.


O isotopism of oh controls do h 2 o

Origin of O of freshly produced OH better understand the budget of the examined trace constituents, i.e. to quantify source/sink strenghts, chemical processing, photolysis rates, transport fluxes etc.

O isotopism of OH controls dO(H2O) !

> 99 % of all H2O molecules produced in the middle

atmosphere are due to H abstraction by OH:

CH4 + OHH2O + CH3

CH2O + OHH2O + HCO

HCl + OHH2O + Cl

OH + OHH2O + O(3P)

H2 + OHH2O + H

What reactions form new OH bonds ?

X + O2HOx + Y

X + O3HOx + Y

X + O(1D) HOx + Y

O exchange: OHx + O2, NO, H2O


ad