1
This presentation is the property of its rightful owner.
Sponsored Links
1 / 66

โครงสร้างอะตอม 1 PowerPoint PPT Presentation


  • 163 Views
  • Uploaded on
  • Presentation posted in: General

โครงสร้างอะตอม 1. Atomic structures. โครงสร้างของอะตอมยุคแรก. ลิวซิพพุส (Leucippus: ca.450 BC) และ ดิโมคริตุส (Democritus: ca. 470-380 BC) สองนักปราชญ์ชาวกรีก ได้เสนอทฤษฎีแนวคิดเกี่ยวกับอะตอมว่า.

Download Presentation

โครงสร้างอะตอม 1

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


1

1

Atomic structures


1

(Leucippus: ca.450 BC) (Democritus: ca. 470-380 BC)

( atomos )

A = , tomos =


1

(John Dalton: 1766-1844) :

1.

2.

3.


1


1

(J.J. Thomson: 1856-1940)


1

(Cathode) (Anode)

( Cathode Ray)


1

e = 1.76 x 108 C/g

m


1

(R. Millikan : 1868-1953) ()


1

= 1.602 x 10-19 C

e/m = 1.75882 x 108 C/g

m = e / (1.75882 x 108 C/g)

= (1.602 x 10-19 C) / (1.75882 x 108 C/g)

= 9.109 x 10-31 kg

= 1.602 x 10-19 C

= 9.109 x 10-31 kg


1

()

(A A+ + e)


1

Cathode

( 42He ) 1830


1


1

(1871-1937) ( 42He2+, )


1

1.

2.


1

3.

4.

()


1

-

-

-

-

p+n

(Sir James Chadwick: .. 1932) (Neutron)


1

.

e

.

Maxwell (.)


1

(Maxwells theory)

(Emission)

2

(Electric wave) (magnetic

wave)


1

(Wave)

(Period)

  • 1. (wavelength, )

  • 2. (frequency, ) 1

  • 3. (velocity, c) 1

  • 4. (amplitude)


1

(c) = 3.0 x 108 m/s


1

= = 1 (cm-1)

c =

= (nm)

= (Hz s-1)


1

  • .Maxwell

- ( )

:


1


1

(Black-body radiation)

()


1

(Max Planck: 1858-1947)

(Quantum) ()

E

E = h

h

= 6.625 x 10-34


1

(.. 1905)

(Albert Einstein) (Photon) h

  • () (0-threshold

    value)


1

Etotal= ho + K.E.

= ho + mv2

e

= h

e


1

ho

Slope = h


1

(Emission spectrum)


1

  • (line spectrum)

1.

2.


1

n

(ground state)


1

(excited state)

(excited state)

h

e

(ground state)


1

e

E2

(excited state)

E = E2 E1

= h

E1

(ground state)

E.


1

(p+n)

e

n = 4 321

r

(Niels Bohr: 1885-1962)

  • r

n 1, 2, 3, ...


1

L = mevr = nh

2

2.

nh

2

L =

me=

v =

h =


1

3.

E = h

= E2 E1

e () E +

e () E -


1

4.

me =

z =

n = 1, 2, 3


1

H

= 2.18 x 10-11 erg

13.61 ev

n

r = n2a0

a0


1

Bohr H H (He+, Li2+)

Rydberg

  • = (Hz)

  • = (cm-1)

    = (cm, nm)

    R = Rydberg constant = 109,678 cm-1


1

H

Rydberg


1

H


1

(p+n)

e

e

e

e

e

n = 4 321


1

(dual nature)

; v =

; = h/mv


1

p.x h/4

(uncertainty

principle)

x

p


1

Schrodinger

!

e

( 4 )


1

1.(Principal quantum number)

  • n

  • (n = 1, 2, 3,..)

  • Shell K, L, M


1

2.(Angularmomentum quantum

number)

  • l

  • e

  • l 0 (n 1)

    n = 1, l = 0

    n = 2, l = 0, 1

    n = 3, l = 0, 1, 2

    n = 4, l = 0, 1, 2, 3


1

l =0 s orbital

(sharp)

l =1 p orbital

(prinsiple)

l =2 d orbital

(diffuse)

l =3 f orbital

(fundamental)


1

3.(Magnetic quantum number)

  • ml

  • e

  • -l +l 2l + 1

  • l degeneracy


1

2


1

3.(Spin quantum number)

  • ms

  • (spin) e

  • 2 +1/2 ()

    -1/2 ()


1

Spin

Spin

ms = -1/2

ms = +1/2


1

e

  • (n) 2n2

  • n = 1 2(1)2= 2

    n = 2 2(2)2= 8

    n = 3 2(3)2= 18

    n = 4 2(4)2= 32


1

e

  • e 2 e

  • s-orbital 1 2 e

    p-orbital 3 6 e

    d-orbital 5 10 e

    f-orbital 7 14 e


1

(Atomic Orbital)

  • ( 90%)

s - orbital

l= 0

n = 1 1s -

n = 2 2s -


1

p - orbital

ml 3 (+1, 0, -1)

p -orbital 3 orbital


1

d - orbital

ml 5 (+2, +1, 0, -1, -2)

e


1

f - orbital

ml 7 (+3, +2, +1, 0, -1, -2, -3)


1

(Electron Configuration)

(ground state)

(Aufbau Principle)


1

(Aufbau Principle)

  • 2

____ , ,


1

2.

3. (Hund.s rule) .

(degenerate orbitals)

(

)

4.

(filled configuration)

(half-filled configuration)


1


1


1

(Pauli Exclusion principle)

:

(n, l, ml, ms)

(1,0,0, +1/2 )

:

(1,0,0, -1/2 )


1


  • Login