Spatial Thinking in Geosciences
This presentation is the property of its rightful owner.
Sponsored Links
1 / 65

Mind PowerPoint PPT Presentation


  • 117 Views
  • Uploaded on
  • Presentation posted in: General

Spatial Thinking in Geosciences Kim Kastens. Mind. Earth. CIESIN Spatial Seminar, 05/05/05. Thanks to:. Toru Ishikawa, L-DEO Lynn Liben, Penn State psychology dept

Download Presentation

Mind

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Mind

Spatial Thinking in Geosciences

Kim Kastens

Mind

Earth

CIESIN Spatial Seminar, 05/05/05


Thanks to

Thanks to:

  • Toru Ishikawa, L-DEO

  • Lynn Liben, Penn State psychology dept

  • Participants in GSA Pardee Symposium, October 2002: “Toward a Better Understanding of the Complicated Earth: Insights from Geologic Research, Education, and Cognitive Science.”

  • Participants in Wingspread Symposium, July 2002: “Bringing Research on Learning to the Geosciences”

  • Members of NRC Committee on “Enhancing Spatial Thinking in K-12 Education”


Mind

Lithosphere

Atmosphere

Hydrosphere


Mind

Lithosphere

Atmosphere

Hydrosphere

Fertile research

areas at interfaces


Mind

Mind

Earth


Mind

Mind

Earth

Fertile research

area at interface


Mind

Mind

Earth

Fertile research

area at interface

How does the human mind comprehend and reason about something as big, old, and complicated as the Earth System?


Mind

How does the human mind comprehend and reason about something as big, old, and complicated as the Earth System?

• having evolved to think about spatial scales ranging from a handsbreadth to the distance one could walk in a day…


Mind

How does the human mind comprehend and reason about something as big, old, and complicated as the Earth System?

• having evolved to think about spatial scales ranging from a handsbreadth to the distance one could walk in a day…

• and temporal scales from a moment to a day to a season to a year to a lifetime…


Mind

How does the human mind comprehend and reason about something as big, old, and complicated as the Earth System?

• having evolved to think about spatial scales ranging from a handsbreadth to the distance one could walk in a day…

• and temporal scales from a moment to a day to a season to a year to a lifetime…

• and complexity scales from ??? to ???


Mind

“Oil is found in the minds of men”

[and women]

Wallace Pratt, Humble Oil

… and so is every other discovery and insight in geoscience!

(Photo from www.nps.gov/gumo/ adhi/adhi3.htm)


Mind

Know the strengths and

weaknesses and limitations of your instruments.

www-mpl.ucsd.edu/research_programs/ deeptow.html


A case study spatial thinking in the geosciences

A Case Study:Spatial Thinking in the Geosciences


A case study spatial thinking in the geosciences1

A Case Study:Spatial Thinking in the Geosciences

What are the spatial thinking tasks that expert geoscientists excel at ….and that geoscience students must master?


Mind

  • Describing the shapes of natural objects, rigorously and unambiguously.

  • Categorizing objects by their shape.

  • Ascribing meaning to the shape of a natural object.

  • Recognizing a shape or pattern amid a cluttered noisy background.

  • Visualizing a 3-D object or structure or process by examining observations collected in one or two dimensions.

  • Describing the position and orientation of objects in the real world relative to a coordinate system anchored to the Earth.

  • Recalling locations of previously observed geological phenomena.

  • Mentally manipulating a volume by folding, faulting, and eroding.

  • Envisioning the motion of objects or materials through space in three dimensions.

  • Making and interpreting spatial representations (including maps).

  • Using spatial thinking to think about time.

  • Using spatial thinking to think about non-spatial properties.


Describing the shapes of natural objects rigorously and unambiguously

Describing the shapes of natural objects, rigorously and unambiguously.

Crystallographer’s description of crystal: “a symmetry plane at right angles to each of the 2-fold rotation axes, and four 3-fold axes of rotary inversion.”

Figures 60 from: Hurlbut, Cornelius S. (1971) Dana’s Manual of Mineralogy, 18th ed. New York: John Wiley & Sons, Inc.

Figure A11 from: Hobbs, Bruce E., Winthrop D. Means, and Paul F. Williams (1976) An Outline of Structural Geology. New York: John Wiley & Sons, Inc.


Describing the shapes of natural objects rigorously and unambiguously1

Describing the shapes of natural objects, rigorously and unambiguously.

  • Elements used in geoscientists’ descriptions of shapes:

    • Symmetry

    • Size

    • Angular relationship

    • Projections of 3-D objects onto a plane


Describing the shapes of natural objects rigorously and unambiguously2

Describing the shapes of natural objects, rigorously and unambiguously.

Downs and Liben (1991) studied college students’ ability to anticipate the form of a shadow cast by a shape rotated to various angles.

Figure 5B in: Downs, Roger M. and Lynn S. Liben (1991) The Development of Expertise in Geography: A Cognitive-Developmental Approach to Geographic Education. Annals of the Association of American Geographers, 81(2), pp.304-327.


Describing the shapes of natural objects rigorously and unambiguously3

Describing the shapes of natural objects, rigorously and unambiguously.

They found that college students performance on projective tasks is poor when the shapes are three dimensional.

Figure 2 in: Merriwether, Ann M. and Lynn S. Liben (1997) Adults’ Failures on Euclidean and Projective Spatial Tasks: Implications for Characterizing Spatial Cognition. Journal of Adult Development, Vol. 4, No. 2.


Describing the shapes of natural objects rigorously and unambiguously4

Describing the shapes of natural objects, rigorously and unambiguously.

Question:

  • What is known about how people perceive symmetry?

  • What is known about how people estimate size and distance?

  • What is known about how people estimate angles?


Classifying or categorizing an object by its shape

Classifying or categorizing an object by its shape.

Marshak, Stephen, (200) Earth Portrait of a Planet, new York, W.W. Norton & Co. Inc., Appendix B-2 Flow Charts for Identifying Minerals .


Classifying or categorizing an object by its shape1

Classifying or categorizing an object by its shape.

Collins and Quillian’s (1969) seminal paper on how knowledge is represented in the brain, postulated that concepts are represented as hierarchies of inter-connected concept-nodes.

A schematic diagram of the sort of hierarchical, semantic networks proposed by Collins and Quillian (1969).

M. W. Eysenck & M. T. Keane (1995). Cognitive psychology: A student's handbook. Hove, UK: Psychology Press.


Classifying or categorizing an object by its shape2

Classifying or categorizing an object by its shape.

They tested this hypothesis by measuring the time to answer questions that require a search from one node to another, e.g.. “Is a canary a bird?” vs. “Is a canary an animal?”

M. W. Eysenck & M. T. Keane (1995). Cognitive psychology: A student's handbook. Hove, UK: Psychology Press.


Questions

Classifying or categorizing an object by its shape.

Questions:

  • Did humans evolve a brain that organizes knowledge in hierarchies in order to make sense of a world which is inherently organized that way?

  • Do we impose hierarchical organizational schema on nature because that is how our brains are good at organizing knowledge?

or


Ascribing meaning to the shape of a natural object

Ascribing meaning to the shape of a natural object.

Distribution of modern species of planktonic foraminifera. Figure 16-1 in: Kennett, James (1982) Marine Geology. Englewood Cliffs, NJ: Prentice-Hall, Inc.

Mylonite. Note fine grain size and strong foliation probably caused by intense shearing.

Source: http://www.glg.ed.ac.uk/cgi-bin-2/config2-spvft

Source: http://www.geolab.unc.edu/Petunia/IgMetAtlas/meta-micro/mylonite.X.html


Ascribing meaning to the shape of a natural object1

Ascribing meaning to the shape of a natural object.

Misconception Research:

Kusnick’s (2002) analysis of student narratives about rock formation found that many students believe that pebbles “grow” or accrete.


Ascribing meaning to the shape of a natural object2

Ascribing meaning to the shape of a natural object.

Question:

  • How do people go from observations about shape, geometry, and pattern to inferences about process and causality?

    • Form follows function

    • Form reflects formative processes

    • Meaning is inferred from co-occurrence under known conditions.

    • Meaning is inferred in situation with only one dominant causal factor.


Mind

Visualizing a 3-D object or structure or processby examining observations collected inone or two dimensions.

Marie Tharp in her Lamont Hall office, c. 1961.

World Ocean Floor by Bruce C. Heezen and Marie Tharp.


Mind

Visualizing a 3-D object or structure or processby examining observations collected inone or two dimensions.


Mind

Visualizing a 3-D object or structure or processby examining observations collected inone or two dimensions.

David Marr’s (1982) studies of visual perception emphasize that we have vast experience translating from 2-D data to 3-D mental models.


Mind

Visualizing a 3-D object or structure or processby examining observations collected inone or two dimensions.

Question

• Can we build on this notion of primal sketch and 2 1/2 dimensional sketch as a way to help learners go from 1-D or 2-D viewer-centered (or sensor-centered) data to a 3-D mental model not tied to viewpoint?


Mind

Describing the position and orientation of objects in the real world relative to a coordinate system anchored to the Earth.


Mind

Describing the position and orientation of objects in the real world relative to a coordinate system anchored to the Earth.


Mind

Describing the position and orientation of objects in the real world relative to a coordinate system anchored to the Earth.

Levinson (1996) describes 3 frames of reference…

S. C. Levinson (1996). Frames of reference and Molyneux's question: Crosslinguistic evidence. In P. Bloom, M. A. Peterson, L. Nadel, & M. F. Garrett (Eds.), Language and space (pp. 109-169). Cambridge, MA: MIT Press.


Mind

Describing the position and orientation of objects in the real world relative to a coordinate system anchored to the Earth.

… and has designed tasks to reveal whether subjects have employed intrinsic, relative, or absolute frames of reference during the task.

S. C. Levinson (1996). Frames of reference and Molyneux's question: Crosslinguistic evidence. In P. Bloom, M. A. Peterson, L. Nadel, & M. F. Garrett (Eds.), Language and space (pp. 109-169). Cambridge, MA: MIT Press.


Mind

Describing the position and orientation of objects in the real world relative to a coordinate system anchored to the Earth.

Subjects in western

cultures overwhelmingly used a relative frame of reference...

S. C. Levinson (1996). Frames of reference and Molyneux's question: Crosslinguistic evidence. In P. Bloom, M. A. Peterson, L. Nadel, & M. F. Garrett (Eds.), Language and space (pp. 109-169). Cambridge, MA: MIT Press.

… but that tendency is not the same across cultures.


Mind

Describing the position and orientation of objects in the real world relative to a coordinate system anchored to the Earth.

Question:

  • How can we foster learners’ ability to think in absolute frames of reference within a language which seems to favor relative frames of reference?

  • How do people convert information from a relative frame of reference to an absolute frame of reference?


Recalling locations of previously observed geological phenomena

Recalling locations of previously observed geological phenomena.

I know I’ve seen

something like this

before.… Now

where was that?


Recalling locations of previously observed geological phenomena1

Recalling locations of previously observed geological phenomena.

McBurney et al. (1997) and Eals and Silverman (1994) test subjects’ recall of location of objects.

Figure 3 from: Eals, Marion and Irwin Silverman (1994) The Hunter-Gatherer Theory of Spatial Sex Differences: Proximate Factors Mediating the Female Advantage in Recall of Object Arrays. Ethnology and Sociobiology, 15: 95-105.


In contrast to many spatial skills they find females out perform males

Recalling locations of previously observed geological phenomena.

In contrast to many spatial skills, they find females out-perform males.

McBurney, D. H., S. J. C. Galin, et al. (1997). "Superior spatial memory of women: stronger evidence for the gathering hypothesis.” Evolution and Human Behavior 18: 165-174.


Mind

Recalling locations of previously observed geological phenomena.

They attribute this to women’s evolutionary role as gatherers who needed to remember the location of medicinal and edible plants.

"Rice Gatherers" by Seth Eastman, 1867, from the Capitol, Washington, D.C.


Questions1

Recalling locations of previously observed geological phenomena.

Questions

  • Can the evolutionary dimorphism hypothesis be tested?

  • Can we extrapolate from a table top to a geologist’s entire world of remembered outcrops?

  • Can we extrapolate from a half hour experiment to a geologist’s lifetime of field experiences?

  • What other aspects of location memory should be studied (in addition to gender contrast) to support geoscience experts and geoscience learners?


Mind

Mentally manipulating a volume by folding, faulting and eroding.

Figure 24.13 in: Ramsay, John G. and Martin I. Huber (1987) The Techniques of Modern Structural Geology, Volume 2: Folds and Fractures. New York: Academic Press; Harcourt Brace Jovanovich, Publishers.


Paper folding tasks are classic measures of spatial visualization ability

Mentally manipulating a volume by folding, faulting and eroding.

Paper folding tasks are classic measures of spatial visualization ability.

J. Eliot & I. M. Smith (1983). An international directory of spatial tests. Windsor, UK: NFER-NELSON.


Question

Mentally manipulating a volume by folding, faulting and eroding.

Question:

  • What has been learned from >50 years of studying paper folding, that can be applied to thinking about the folding of geological strata?


Using spatial thinking to think about non spatial properties

Using spatial thinking to think about non-spatial properties.


Using spatial thinking to think about non spatial properties questions

Using spatial thinking to think about non-spatial properties. Questions

  • Why is spatialization of non-spatial information so powerful?

  • How can we help learners learn to harness the power of spatialization?


Mind

  • Lamont Research

  • Describing the shapes of natural objects

  • Categorizing objects by their shape.

  • Ascribing meaning to the shape of a natural object.

  • Recognizing a shape or pattern amid a cluttered noisy background.

  • Visualizing a 3-D object or structure or process.

  • Describing the position and orientation of objects in the real world relative to a coordinate system anchored to the Earth.

  • Recalling locations of previously observed geological phenomena.

  • Mentally manipulating a volume by folding, faulting, and eroding.

  • Envisioning the motion of objects or materials through space in three dimensions.

  • Making and interpreting spatial representations (including maps).

  • Using spatial thinking to think about time.

  • Using spatial thinking to think about non-spatial properties.


Mind

How do geology students learn to visualize 3-D geologic structures from the limited information available in outcrops?


Mind

How do geology students learn to visualize 3-D geologic structures from the limited information available in outcrops?


Mind

How do geology students learn to visualize 3-D geologic structures from the limited information available in outcrops?

3-D variant of Piaget’s water level task.


Mind

  • Lamont Research

  • Describing the shapes of natural objects

  • Categorizing objects by their shape.

  • Ascribing meaning to the shape of a natural object.

  • Recognizing a shape or pattern amid a cluttered noisy background.

  • Visualizing a 3-D object or structure or process.

  • Describing the position and orientation of objects in the real world relative to a coordinate system anchored to the Earth.

  • Recalling locations of previously observed geological phenomena.

  • Mentally manipulating a volume by folding, faulting, and eroding.

  • Envisioning the motion of objects or materials through space in three dimensions.

  • Making and interpreting spatial representations (including maps).

  • Using spatial thinking to think about time.

  • Using spatial thinking to think about non-spatial properties.


How do children learn to translate from 3 d reality to 2 d map

How do children learn to “translate” from3-D reality to 2-D map?


How do children learn to translate from 3 d reality to 2 d map1

How do children learn to “translate” from3-D reality to 2-D map?.


How do children learn to translate from 3 d reality to 2 d map2

How do children learn to “translate” from3-D reality to 2-D map?

Baseline


How do children learn to translate from 3 d reality to 2 d map3

How do children learn to “translate” from3-D reality to 2-D map?

Baseline

Reflecting


Mind

Among the reflecting students, we see:

• few clue-answers that are inaccurate descriptions of reality, but many clue-answers that are insufficient to pinpoint sticker,

• many sticker placements that are wrong, but wrong in a way that is consistent with the corresponding clue-answer.


How do children learn to translate from 3 d reality to 2 d map4

How do children learn to “translate” from3-D reality to 2-D map?.

Difficult Not so difficult


How do children learn to translate from 3 d reality to 2 d map5

How do children learn to “translate” from3-D reality to 2-D map?.

  • Verbal description:

  • The orange sticker is on the mansion.

  • It’s on a corner of the mansion.

  • It’s on the corner closest to the path that leads to the pond.


How do children learn to translate from 3 d reality to 2 d map6

How do children learn to “translate” from3-D reality to 2-D map?

Baseline

Verbal Description

Reflecting


How well do maps communicate complex information to policy makers

How well do maps communicate complex information to policy-makers?


Mind

Question 3:

Complete the following sentence on the basis of threshold maps and

a forecast map:

“The probability is _____% that Charleston, South Carolina, will receive

more than _____ mm of precipitation”


Mind

• Results:

Above-normal precip. cities:

Major types of misconceptions:

• (below_%) = 100 – (above_%).

• If classified as above-normal,

(below_%) = 0;

If classified as below-normal,

(above_%) = 0.


Bottom line

Bottom Line

  • Fascinating questions

  • Few answers

  • Lots of opportunity

Mind

Earth


  • Login