Chapter 15 dynamics of consumer resource interactions
Download
1 / 76

Chapter 15: Dynamics of Consumer-Resource Interactions - PowerPoint PPT Presentation


  • 84 Views
  • Uploaded on

Chapter 15: Dynamics of Consumer-Resource Interactions. Population Cycles of Canadian Hare and Lynx. Charles Elton’s seminal paper focused on fluctuations of mammals in the Canadian boreal forests. Elton’s analyses were based on trapping records maintained by the Hudson’s Bay Company

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Chapter 15: Dynamics of Consumer-Resource Interactions' - herb


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

Population cycles of canadian hare and lynx
Population Cycles of Canadian Hare and Lynx

  • Charles Elton’s seminal paper focused on fluctuations of mammals in the Canadian boreal forests.

    • Elton’s analyses were based on trapping records maintained by the Hudson’s Bay Company

    • of special interest in these records are the regular and closely linked fluctuations in populations of the lynx and its principal prey, the snowshoe hare

  • What causes these cycles?


Some fundamental questions
Some Fundamental Questions

  • The basic question of population biology is:

    • what factors influence the size and stability of populations?

  • Because most species are both consumers and resources for other consumers, this basic question may be refocused:

    • are populations limited primarily by what they eat or by what eats them?


More questions
More Questions

  • Do predators reduce the size of prey populations substantially below the carrying capacity set by resources for the prey?

    • this question is prompted by interests in management of crop pests, game populations, and endangered species

  • Do the dynamics of predator-prey interactions cause populations to oscillate?

    • this question is prompted by observations of predator-prey cycles in nature, such as Elton’s lynx and hare


Consumers can limit resource populations
Consumers can limit resource populations.

  • An example: populations of cyclamen mites, a pest of strawberry crops in California, can be regulated by a predatory mite:

    • cyclamen mites typically invade strawberry crops soon after planting and build to damaging levels in the second year

    • predatory mites invade these fields in the second year and keep cyclamen mites in check

  • Experimental plots in which predatory mites were controlled by pesticide had cyclamen mite populations 25 times larger than untreated plots.


What makes an effective predator
What makes an effective predator?

  • Predatory mites control populations of cyclamen mites in strawberry plantings because, like other effective predators:

    • they have a high reproductive capacity relative to that of their prey

    • they have excellent dispersal powers

    • they can switch to alternate food resources when their primary prey are unavailable


Consumer control in aquatic ecosystems
Consumer Control in Aquatic Ecosystems

An example: sea urchins exert strong control on populations of algae in rocky shore communities:

  • in urchin removal experiments, the biomass of algae quickly increases:

    • in the absence of predation, the composition of the algal community also shifts:

      • large brown algae replace coralline and small green algae that can persist in the presence of predation


Predator and prey populations often cycle
Predator and prey populations often cycle.

  • Population cycles observed in Canada are present in many species:

    • large herbivores (snowshoe hares, muskrat, ruffed grouse, ptarmigan) have cycles of 9-10 years:

      • predators of these species (red foxes, lynx, marten, mink, goshawks, owls) have similar cycles

    • small herbivores (voles and lemmings) have cycles of 4 years:

      • predators of these species (arctic foxes, rough-legged hawks, snowy owls) also have similar cycles

    • cycles are longer in forest, shorter in tundra


Herbivores can control plant populations
Herbivores can control plant populations

  • Klamath weed, or St. John’s wart, became a widespread pest following its introduction into the western US



Impact of cattle grazing introduced beetles



Why? regular cycles

Hare populations fluctuated less on an island with few predators than on the surrounding mainland


Other factors
Other factors… regular cycles

  • Period and intensity of a cycle also depend on the physical environment

  • Owl (predator) and vole (prey) population cycle dramatically over 4-year periods in northern Scandinavia – but fluctuate annually in the milder climate of southern Sweden

  • Why?

    • Prolonged heavy snow cover protects the voles from the owls thus creating a delay in the effects…


Predator prey cycles a simple explanation
Predator-Prey Cycles: A Simple Explanation regular cycles

  • Population cycles of predators lag slightly behind population cycles of their prey:

    • predators eat prey and reduce their numbers

    • predators go hungry and their numbers drop

    • with fewer predators, the remaining prey survive better and prey numbers build

    • with increasing numbers of prey, the predator populations also build, completing the cycle


Time lags in predator prey systems
Time Lags in Predator-Prey Systems regular cycles

  • Delays in responses of births and deaths to an environmental change produce population cycles:

    • predator-prey interactions have time lags associated with the time required to produce offspring

    • 4-year and 9- or 10-year cycles in Canadian tundra or forests suggest that time lags should be 1 or 2 years, respectively:

      • these could be typical lengths of time between birth and sexual maturity

      • the influence of conditions in one year might not be felt until young born in that year are old enough to reproduce


Time lags in pathogen host systems
Time Lags in Pathogen-Host Systems regular cycles

  • Immune responses can create cycles of infection in certain diseases:

    • measles produced epidemics with a 2-year cycle in pre-vaccine human populations:

      • two years were required for a sufficiently large population of newly susceptible infants to accumulate


Time lags in pathogen host systems1
Time Lags in Pathogen-Host Systems regular cycles

other pathogens cycle because they kill sufficient hosts to reduce host density below the level where the pathogens can spread in the population:

  • such cycling is evident in polyhedrosis virus in tent caterpillars

  • In many regions, tent caterpillar infestations last about 2 years before the virus brings its host population under control

  • In other regions, infestations may last up to 9 years

  • Forest fragmentation – which creates abundant forest edge – tends to prolong outbreaks of the tent caterpillar

    • Why?

    • Increased forest edge exposes caterpillars to more intense sunlight  inactivates the virus  thus, habitat manipulation here has secondary effects



Laboratory investigations of predators and prey
Laboratory Investigations of Predators and Prey regular cycles

  • G.F. Gause conducted simple test-tube experiments with Paramecium (prey) and Didinium (predator):

    • in plain test tubes containing nutritive medium, the predator devoured all prey, then went extinct itself

    • in tubes with a glass wool refuge, some prey escaped predation, and the prey population reexpanded after the predator went extinct

      • Gause could maintain predator-prey cycles in such tubes by periodically adding more predators


Predator prey interactions can be modeled by simple equations
Predator-prey interactions can be modeled by simple equations.

  • Lotka and Volterra independently developed models of predator-prey interactions in the 1920s:

    dR/dt = rR - cRP

    describes the rate of increase of the prey population, where:

    R is the number of prey

    P is the number of predators

    r is the prey’s per capita exponential growth rate

    c is a constant expressing efficiency of predation


Lotka volterra predator prey equations
Lotka-Volterra Predator-Prey Equations equations.

  • A second equation:

    dP/dt = acRP - dP

    describes the rate of increase of the predator population, where:

    P is the number of predators

    R is the number of prey

    a is the efficiency of conversion of food to growth

    c is a constant expressing efficiency of predation

    d is a constant related to the death rate of predators


Predictions of lotka volterra models
Predictions of Lotka-Volterra Models equations.

  • Predators and prey both have equilibrium conditions (equilibrium isoclines or zero growth isoclines):

    • P = r/c for the predator

    • R = d/ac for the prey

    • when these values are graphed, there is a single joint equilibrium point where population sizes of predator and prey are stable:

      • when populations stray from joint equilibrium, they cycle with period T = 2 /rd


Cycling in lotka volterra equations
Cycling in Lotka-Volterra Equations equations.

  • A graph with axes representing sizes of the predator and prey populations illustrates the cyclic predictions of Lotka-Volterra predator-prey equations:

    • a population trajectory describes the joint cyclic changes of P and R counterclockwise through the P versus R graph


Factors changing equilibrium isoclines
Factors Changing Equilibrium Isoclines equations.

  • The prey isocline increases (r/c) if:

    • Reproductive rate of the prey (r) increases or capture efficiency of predators (c) decreases, or both:

      • the prey population would be able to support the burden of a larger predator population

  • The predator isocline (d/ac) increases if:

    • Death rate (d) increases and either reproductive efficiency of predators (a) or c decreases:

      • more prey would be required to support the predator population


Other lotka volterra predictions
Other Lotka-Volterra Predictions equations.

  • Increasing the predation efficiency (c) alone in the model reduces isoclines for predators and prey:

    • fewer prey would be needed to sustain a given capture rate

    • the prey population would be less able to support the more efficient predator

  • Increasing the birth rate of the prey (r) should lead to an increase in the population of predators but not the prey themselves.


An increase in the birth rate of prey increases the predator population but not the prey population
An increase in the birth rate of prey increases the predator population but not the prey population.


Modification of lotka volterra models for predators and prey
Modification of Lotka-Volterra Models for Predators and Prey population but not the prey population

  • There are various concerns with the Lotka-Volterra equations:

    • the lack of any forces tending to restore the populations to the joint equilibrium:

      • this condition is referred to as a neutral equilibrium

    • the lack of any satiation of predators:

      • each predator consumes a constant proportion of the prey population regardless of its density


The functional response
The Functional Response population but not the prey population

  • A more realistic description of predator behavior incorporates alternative functional responses, proposed by C.S. Holling:

    • type I response: rate of consumption per predator is proportional to prey density (no satiation)

    • type II response: number of prey consumed per predator increases rapidly, then plateaus with increasing prey density

    • type III response: like type II, except predator response to prey is depressed at low prey density


Welcome back
Welcome back population but not the prey population

  • Yes, exam is on the 23rd of December

    • Chapters 7, 8, 10, 14, 15 + cc

    • http://www.guardian.co.uk/environment/interactive/2009/dec/07/copenhagen-climate-change-carbon-emissions

    • Exam is in this class room. Promptly at 2 pm

  • Oral presentations

  • I may miss you Friday  (not 100% sure)

  • Remaining chapters

    • Chapters 22, 23, 26, 27 plus ?


Student exam questions
Student Exam questions population but not the prey population

  • submit ?s to me via email that could be used on the exam.  Submit ?s by 21-December (Mon)

  • The ?s should have the same format as those on the practice quizzes (i.e., multiple choice with 4 options).  You may also email essay questions.

  • Put "BIOL 207: questions for exam" in the subject line.  For each ? of yours that is used on the exam, you will receive 1 EC pt.  I will limit you to 2 EC ? per exam, but it is in your best interest to submit several (8-10) ?s. 


Lotka volterra model remember
Lotka-Volterra model (remember?) population but not the prey population

  • [the rate of change in the prey population ] = [the intrinsic growth rate of the prey population] – [the removal of prey individuals by predators]

  • Equilibrium isocline


Pathogen-host dynamics population but not the prey population


Individuals in a host populations are initially susceptible to a new pathogen  become infected (and can infect others)  recover and become resistant



The functional response1
The Functional Response to a new pathogen

  • A more realistic description of predator behavior incorporates alternative functional responses, proposed by C.S. Holling:

    • type I response: rate of consumption per predator is proportional to prey density (no satiation)

    • type II response: number of prey consumed per predator increases rapidly, then plateaus with increasing prey density

    • type III response: like type II, except predator response to prey is depressed at low prey density


The holling type iii response
The Holling Type III Response to a new pathogen

  • What would cause the type III functional response?

    • heterogeneous habitat, which provides a limited number of safe hiding places for prey

    • lack of reinforcement of learned searching behavior due to a low rate of prey encounter

    • switching by predator to alternative food sources when prey density is low


Switching
switching to a new pathogen

  • When the predatory water bug (N. glauca) was presented with 2 types of prey in the lab, it consumed the more abundant prey species, whichever it was, in a proportion greater than its percentage of occurrence.

  • The switching depended on a variation in the success of attacks on prey as a function of their relative density


Variation in prey availability does not always lead to switching

Some predators will switch prey only when the availability of their principal prey is extremely low




The numerical response
The Numerical Response prey density. What does that mean?

  • Individual predators can increase their consumption of prey only to the point of satiation

  • If individual predators exhibit satiation (type II or III functional responses), continued predator response to prey must come from:

    • increase in predator population through local population growth or immigration from elsewhere

      • this increase is referred to as a numerical response


Several factors reduce predator prey oscillations
Several factors reduce predator-prey oscillations. prey density. What does that mean?

  • All of the following tend to stabilize predator and prey numbers (in the sense of maintaining nonvarying equilibrium population sizes):

    • predator inefficiency

    • density-dependent limitation of either predator or prey by external factors

    • alternative food sources for the predator

    • refuges from predation at low prey densities

    • reduced time delays in predator responses to changes in prey abundance


Destabilizing influences
Destabilizing Influences prey density. What does that mean?

  • The presence of predator-prey cycles indicates destabilizing influences:

    • such influences are typically time delays in predator-prey interactions:

      • developmental period

      • time required for numerical responses by predators

      • time course for immune responses in animals and induced defenses in plants

    • when destabilizing influences outweigh stabilizing ones, population cycles may arise


Predator prey systems can have more than one stable state
Predator-prey systems can have more than one stable state. prey density. What does that mean?

  • Prey are limited both by their food supply and the effects of predators:

    • some populations may have two or more stable equilibrium points, or multiple stable states:

      • such a situation arises when:

        • prey exhibits a typical pattern of density-dependence (reduced growth as carrying capacity is reached)

        • predator exhibits a type III functional response


Three equilibria
Three Equilibria prey density. What does that mean?

  • The model of predator and prey responses to prey density results in three stable or equilibrium states:

    • a stable point A (low prey density) where:

      • any increase in prey population is more than offset by increasingly efficient prey capture by predator

    • an unstable point B (intermediate prey density) where:

      • control of prey shifts from predation to resource limitation

    • a stable point C where:

      • prey escapes control by predator and is regulated near its carrying capacity by resource scarcity



Implications of multiple stable states
Implications of Multiple Stable States response)

Predators may control prey at a low level (point A in model), but can lose the potential to regulate prey at this level if prey density increases above point B in the model:

  • a predator controlling an agricultural pest can lose control of that pest if the predator is suppressed by another factors for a time:

    • once the pest population exceeds point B, it will increase to a high level at point C, regardless of predator activity

    • at this point, pest population will remain high until some other factor reduces the pest population below point B in the model


Intensity of predation relative to prey recruitment determines the number of stable predator-prey equilibrium points

C = equilibrium point;

K = carrying capacity


Effects of different levels of predation
Effects of Different Levels of Predation determines the number of stable predator-prey equilibrium points

  • Inefficient predators cannot maintain prey at low levels (prey primarily limited by resources).

  • Increased predator efficiency adds a second stable point at low prey density.

  • Further increases in predator functional and numerical responses may eliminate a stable point at high prey density

  • Intense predation at all prey levels can drive the prey to extinction


When can predators drive prey to extinction
When can predators drive prey to extinction? determines the number of stable predator-prey equilibrium points

  • It is clearly possible for predators to drive their prey to extinction when:

    • predators and prey are maintained in simple laboratory systems

    • predators are maintained at high density by availability of alternative, less preferred prey:

      • biological control may be enhanced by providing alternative prey to parasites and predators


What equilibria are likely
What equilibria are likely? determines the number of stable predator-prey equilibrium points

  • Models of predator and prey suggest that:

    • prey are more likely to be held at relatively low or relatively high equilibria (or perhaps both)

    • equilibria at intermediate prey densities are highly unlikely


Yes page 324 maximum sustainable yield

YES! PAGE 324! MAXIMUM SUSTAINABLE YIELD determines the number of stable predator-prey equilibrium points


ad