1 / 13

16.360 Lecture 6

+. V 0. with  =. -. V 0. +. -. V(z) = V 0. +. V 0. -. +. +. -. i (z) =. V 0. V 0. V 0. j  z. j  r. Z 0. Z 0. Z 0. e. e. j  z. j  z. -j  z. -j  z. -j  z. -j  z. j  z. -j  z. ( e. e. e. e. e. e. e. e. +. 1/2.

henkeld
Download Presentation

16.360 Lecture 6

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. + V0 with  = - V0 + - V(z) = V0 + V0 - + + - i(z) = V0 V0 V0 jz jr Z0 Z0 Z0 e e jz jz -jz -jz -jz -jz jz -jz (e e e e e e e e + 1/2 = |V0| [1+ | |² + 2||cos(2z + r)] 16.360 Lecture 6 • Standing wave jz + e V(z) = V0() +  - i(z) = )  + |V(z)| = |V0| || + ||

  2. + V0 with  = - V0 + - V(z) = V0 + V0 - + + - i(z) = V0 V0 V0 jz jr Z0 Z0 Z0 e e jz jz -jz -jz -jz -jz jz -jz (e e e e e e e e + 1/2 = |V0| [1+ | |² + 2||cos(2z + r)] 16.360 Lecture 6 • Standing wave jz + e V(z) = V0() +  - i(z) = )  + |V(z)| = |V0| || + ||

  3. jz + e +  - || + V0 jz jr Z0 e e jz -jz -jz -jz (e e e e + 1/2 = |V0| [1+ | |² + 2||cos(2z + r)] 16.360 Lecture 6 • Standing wave V(z) = V0() - i(z) = )  + |i(z)| = |V0| /|Z0||| + 1/2 = |V0|/|Z0| [1+ | |² - 2||cos(2z + r)] |V(z)|

  4. + |V(z)| |V0| [1+ | |], = max |V(z)| + 1/2 = |V0| [1+ | |² + 2||cos(2z + r)] 16.360 Lecture 6 • Voltage maximum when 2z + r = 2n. –z = r/4+n/2 n = 1, 2, 3, …, if r <0 n = 0, 1, 2, 3, …, if r >= 0

  5. + |V(z)| |V0| [1 - | |], = min |V(z)| + 1/2 = |V0| [1+ | |² + 2||cos(2z + r)] 16.360 Lecture 6 • Voltage minimum when 2z + r = (2n+1). –z = r/4+n/2 + /4 Note: voltage minimums occur /4 away from voltage maximum, because of the 2z, the special frequency doubled.

  6. S  |V(z)| |V(z)| min max 1 + | | = 1 - | | 16.360 Lecture 6 • Voltage standing-wave ratio VSWR or SWR S = 1, when  = 0, S = , when || = 1,

  7. B A Z0 VL Vg(t) Vi ZL l z = - l z = 0 16.360 Lecture 6 • An example Voltage probe S = 3, Z0 = 50, lmin = 30cm, lmin = 12cm, ZL=? Solution: lmin = 30cm,  = 0.6m, S = 3,  || = 0.5, -2lmin + r = -,  r = -36º,  , and ZL.

  8. jz jz + + e e + -   ( ( ) ) V0 V0 V(z) I(z) j2z -j2l -j2l j2z e e e e - + - + (1 (1 (1 (1     ) ) ) ) Z0 Z0 -jz -jz e e 16.360 Lecture 6 • Input impudence B Ii A Zg Vg(t) Z0 VL Vi ZL l z = - l z = 0 Zin(z) = Z0 = = Zin(-l) =

  9. Input Impedance At input, d = l:

  10. -j2l -j2l e e - + (1 (1   ) ) Z0 16.360 Lecture 6 An example A 1.05-GHz generator circuit with series impedance Zg = 10- and voltage source given by Vg(t) = 10 sin(t +30º) is connected to a load ZL = 100 +j5- through a 50-, 67-cm long lossless transmission line. The phase velocity is 0.7c. Find V(z,t) and i(z,t) on the line. Solution: Since, Vp = ƒ,  = Vp/f = 0.7c/1.05GHz = 0.2m.  = 2/,  = 10 .  = (ZL-Z0)/(ZL+Z0),  = 0.45exp(j26.6º) Zin(-l) = = 21.9 + j17.4  Zin(-l) + V0[exp(-jl)+ exp(jl)] Vg = Zin(-l) + Zg

  11. |V(z)| + V0 + |V0| - -3/4 -/2 -/4 |V(z)| + - 2|V0| V0 |V(z)| |V(z)| + 2|V0| - -3/4 -/2 -/4 + 1/2 - -3/4 -/2 -/4 = |V0| [1+ | |² + 2||cos(2z + r)] 16.360 Lecture 6 Standing Wave Special cases • ZL= Z0, = 0 + |V(z)| = |V0| - ZL Z0   = + ZL Z0 2. ZL= 0,short circuit, = -1 + 1/2 |V(z)| = |V0| [2 + 2cos(2z + )] 3. ZL= ,open circuit, = 1 + 1/2 |V(z)| = |V0| [2 + 2cos(2z )]

More Related