This presentation is the property of its rightful owner.
Sponsored Links
1 / 128

第 4 章 模糊控制 PowerPoint PPT Presentation


  • 130 Views
  • Uploaded on
  • Presentation posted in: General

第 4 章 模糊控制. 4.1 模糊控制的基本原理. 4.1.1 模糊控制原理. 模糊控制是以模糊集理论、模糊语言变量和模糊逻辑推理为基础的一种智能控制方法,它是从行为上模仿人的模糊推理和决策过程的一种智能控制方法。该方法首先将操作人员或专家经验编成模糊规则,然后将来自传感器的实时信号模糊化,将模糊化后的信号作为模糊规则的输入,完成模糊推理,将推理后得到的输出量加到执行器上。. 图 模糊控制原理框图.

Download Presentation

第 4 章 模糊控制

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


4

4

4.1


4

4.1.1


4


4

Fuzzy ControllerFCFuzzy Logic ControllerFLC,Fuzzy Language ControllerFLC


4

4.1.2


4

1Fuzzy interface

e

1{}={NB, NS, ZO, PS, PB}

2{}={NB, NM, NS, ZO, PS, PM, PB}

3{}={NB, NM, NS, NZ, PZ, PS, PM, PB}


4


4

2. Knowledge BaseKB

1Data BaseDB


4

2Rule BaseRB if-thenelsealsoendorif-thenalsoandEEC


4

  • R1: IF E is NB and EC is NB then U is PB

  • R2: IF E is NB and EC is NS then U is PM

    ifthenIf A and B then C,AUBVR, R


4


4

3 Inference and Defuzzy-interface

Zadeh


4


4

4.1.3

4-4

O

O


4

4-4


4

1

Oh0h

Oe

2

eNBNSOPSPB


4

e-3-2-10+1+2+34-1

4-1


4

uNBNSOPSPBu-4-3-2-10+1+2+3+44-2


4

4-2


4

3

1eu

2eu

3e0u0

4eu

5eu

uu


4

IF A THEN B

1 if e=NB then u=NB

2 if e=NS then u=NS

3 if e=0 then u=0

4 if e=PS then u=PS

5 if e=PB then u=PB

4-3


4

4-3

4

UVR


4


4

5

eNB


4

6

e=NB


4

Matlab4-4e=-3u =-3.1481

4-4


4

1

Single Variable Fuzzy ControllerSVFC


4

1 E


4

2 EEC


4

3 EECECC


4


4

2

Multiple Variable Fuzzy Controller4-6

-MIMO-MISO


4

4-6


4

2

1

1

2


4

2

Suvuv

mV


4

k01 S2 S

3

1

2


4

4

1>1


4

3

3.1


4

1

2

EECu

EECu

EEC{-3-2-10123}

u{-4.5,-3,-1.5,0,1,3,4.5}


4

3

EECu

4


4

5

4-549u1u2,,u49U


4

4-5


4

6

7


4

(1)

V

N


4

(2)


4

m


4

  • (3)


  • 4

    Matlab1centroid2bisector3mom4som5lom

    Matlabsetfis()defuzz()


    4

    x=-10:1:10;

    mf=trapmf(x,[-10,-8,-4,7]);

    xx=defuzz(x,mf,centroid);

    a1=setfis(a,'DefuzzMethod','centroid')

    a


    4

    3.2 Matlab

    1

    4-549[-3,3], [-4.5,4.5]showrule(a)494-6


    4

    ec

    e

    -3

    -2

    -1

    0

    1

    2

    3

    -3

    -4

    -2

    -2

    -1

    -1

    0

    1

    -2

    -4

    -2

    -2

    -1

    0

    1

    1

    -1

    -2

    -2

    -1

    0

    1

    1

    2

    -1

    -1

    -1

    0

    1

    1

    2

    2

    -1

    -1

    0

    1

    1

    2

    3

    3

    2

    0

    1

    1

    2

    3

    3

    3

    3

    1

    1

    2

    2

    3

    3

    4

    • 4-6


    4

    • chap4_2.mplotfis(a2)4-74-9

    4-7


    4

    4-8


    4

    4-9


    4

    • 2

    • chap4_2.ma2Simulink4-10

    • Simulinkchap4_3.mdl


    4

    4-10

    4-10


    4

    4 -

    1

    2

    SDMDLD[0100]


    4

    3

    4-11


    4

    4-11


    4

    Matlabchap4_4.m


    4

    NGMGLG[0100]


    4

    4-12

    4-12


    4

    VSSMLVL[060]

    4-13


    4

    4-13


    4

    Matlabchap4_5


    4

    4

    5

    4-7


    4

    4-7


    4

    *IF THEN

    6


    4

    4-8

    4-8


    4

    4

    Rule 1IF y is MD and x is MG THEN z is M

    Rule 2IF y is MD and x is LG THEN z is L

    Rule 3IF y is LD and x is MG THEN z is L

    Rule 4IF y is LD and x is LG THEN z is VL

    1min4/53/5=3/5

    2min4/52/5=2/5

    3min1/53/5=1/5

    4min1/52/5=1/5


    4

    4-9

    4-9


    4

    4-10

    4-10


    4


    4


    4

    MATLABx=60y=7033.6853ruleview4-16

    chap4_6.m


    4

    4-16


    4

    5 PID

    4.5.1 PID

    PIDPID


    4

    PIDPIDPIDPID


    4

    (PID)PIDPIDPID

    PIDPIDPIDPID4-15


    4

    PIDPID3

    4-15


    4

    1

    2


    4

    3

    PID

    PID3-4

    PIDPIDeec,


    4

    Kp, Ki, Kd

    (1) Kp4-11

    4-11


    4

    4-12 Ki

    2Ki4-12


    4

    4-13 Kd

    3Kd4-13


    4

    Kp,Ki,Kd

    eec

    (4.9)

    eecPID


    4

    (4.10)

    PID4-16


    4

    4-16


    4

    4.5.2

    1msz

    1.0 chap4_7a.mfuzzpid.fischap4_7b.m


    4

    chap4_7a.m4-114-13 MATLABaplotmf4-174-21showrulefuzzpid.fisfuzzy4-22ruleview4-23


    4

    4-17


    4

    4-18


    4

    4-19


    4

    4-20


    4

    4-21


    4 22 fuzzpid fis

    4-22 fuzzpid.fis


    4

    4-23


    4

    • chap4_7b.mfuzzpid.fisPIDPID3001.0PID4-244-29


    4 22 pid

    4-22 PID


    4 23 pid

    4-23 PID


    4 24 u

    4-24 U


    4

    4-25


    4

    4-26


    4

    4-27

    PIDchap4_7a.mchap4_7b.m


    6 sugeno

    6 Sugeno

    6.1 Sugeno

    Mamdani

    Sugenoconstantlinear

    Mamdani

    1

    2


    4

    6.2 Sugeno


    4

    Sugeno

    chap4_8.m


    Sugeno

    Sugeno


    Sugeno1

    Sugeno/


    4

    7 Sugeno

    7.1

    Sugeno


    4


    4

    7.2 Sugeno


    4

    • place(A,B,P)F


    4

    / /2 chap4_9.m


    4

    8

    1

    21

    1


    4

    19903

    2

    3

    RE-SEI12


    4

    4

    5


    4

    2

    1

    2pH

    3

    4


    4

    3


    4

    9

    1

    Zadeh4-14


    4

    4-1


    4

    2

    (1) Fuzzy-PID

    Fuzzy-PIDPIDPID


    4

    (2)

    (3)


    4

    (4)

    (5)


    4

    3

    1

    2

    3

    4

    5

    6


  • Login