1 / 15

Announcements

Announcements. CAPA #11 due this Friday at 10 pm Reading: Chapter 9 Section – this week Lab # 4 , next week Lab #5 (no prelab ) Midterm Exam #3 on Tuesday November 8 th , 2011  details given on course web page “exam info”  practice exam and solutions on CULearn

haven
Download Presentation

Announcements

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Announcements • CAPA #11 due this Friday at 10 pm • Reading: Chapter 9 • Section – this week Lab #4, next week Lab #5 (no prelab) • Midterm Exam #3 on Tuesday November 8th, 2011 •  details given on course web page “exam info” •  practice exam and solutions on CULearn •  formula sheet and info. posted on web page • Fraction of all clicker questions answered posted on CULearn. Email me with your clicker ID, name, student ID if you believe it is incorrect.

  2. Static Equilibrium

  3. A mass m is hanging (statically) from two strings. The mass m, and the angles α and β are known. What are the tensions T1 and T2? Note: No lever arm. Thus no torques. Two equations with two unknowns, can solve for T1 and T2 after some algebra.

  4. Static Equilibrium Problem: 4 Step Process y x N CCW= + Axis of rotation Mg mg #1 – Draw the free body diagram identifying all forces and exactly where they act. #2 – Label the coordinate axis and axis of rotation being considered (and the sign convention)

  5. Static Equilibrium Problem: 4 Step Process y x N CCW= + Axis of rotation Mg mg #3 – Write out Fnet = ma and tnet = Ia equations… Fnet,x = (M+m)ax= 0 (no forces in this direction) Fnet,y = (M+m)ay= 0 = +N – Mg – mg tnet = Ia = 0 = +(Mg)D1 – (mg)D2 #4 – Solve…

  6. Clicker Question Room Frequency BA We treat the force of gravity (Mg) as if it acts only on the center-of-mass position of the object. L/2 Mgcos(60) Approximately in the middle of the pencil. N Mgsin(60) Assume pencil of length L and mass M and with q=60 degrees. Mg q What is the torque around the tip of the pencil at this time? -(N-Mg) sin(60) L -Mg cos(60) L/2 – N cos(60) L -Mg sin(60) L/2 -Mg cos(60) L/2 -Mg sin(60) L tnet = r Fperp = -(L/2) (Mgcos(60))

  7. Stability and Balance If only the gravitational force and the Normal force are acting (as shown), if the center-of-mass is not directly over the point of contact, the system is unstable (will fall over). System is in static equilibrium. Called unstable equilibrium (slightest change and it falls) System is in static equilibrium. Called neutral equilibrium.

  8. Clicker Question Room Frequency BA Case 1 Case 2 Which of the following are correct (assume in both cases the sphere is at rest at this moment)? Case 1 and Case 2 are in neutral equilibrium Case 1 is in unstable equilibrium and Case 2 is just unstable Case 1 is in neutral equilibrium and Case 2 is in neutral eq. Case 1 is in neutral equilibrium and Case 2 is just unstable None of the above

  9. Tipping Point If force of gravity applied at the center-of-gravity (CG) points outside the point of balance, the object will fall (unstable). U.S. Consumer Product Safety Commission finds approximately 2.18 deaths per year from vending machine tipovers.

  10. Clicker Question Room Frequency BA The leaning tower of Pisa is 55 m high and leans 4 m off vertical at the top. Its base is 7 m wide. How much further could it lean horizontally (at the top) before it would fall over? A) 1.5 m B) 2 m C) 3 m D) 4 m E) 6 m 4.0 m 55 m CM 7 m Ignoring any small forces holding it to the ground.

  11. A sign with mass ms is hung from a uniform bar of mass mb and length L. The sign is suspended ¾ of the way from the pivot. The sign is held up with a cable at an angle θ. How strong a cable is required (i.e. what is tension T)?

  12. Step #1: Force Diagram Step #2: Coordinate System y x CCW= +

  13. Clicker Question Room Frequency BA A sign of mass ms is hung from a uniform horizontal bar of mass mB as shown. What is the sign of the x-component of the force exerted on the bar by the wall? Positive Negative Fwx = 0. Using Σ Fx = 0, the hinge force must have a positive x-component, in order to cancel the negative x-component of the tension force.

  14. y x CCW= + Step #3: Static Equilibrium condition F=ma=0 and t=Ia=0 Not enough information to solve for T, Fwx, Fwy (2 constraint equations and 3 unknowns)

More Related