1 / 18

Antimatter in our Galaxy unveiled by INTEGRAL

Antimatter in our Galaxy unveiled by INTEGRAL. Jürgen Knödlseder Centre d’Etude Spatiale des Rayonnements, Toulouse, France. The pre-INTEGRAL epoch. Galactic positron annihilation. OSSE, TGRS, SMM, …. Purcell et al. 1997. Morphology & Flux 3 components : - bulge - disk - PLE

hastin
Download Presentation

Antimatter in our Galaxy unveiled by INTEGRAL

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Antimatter in our Galaxy unveiled by INTEGRAL Jürgen Knödlseder Centre d’Etude Spatiale des Rayonnements, Toulouse, France

  2. The pre-INTEGRAL epoch Galactic positron annihilation OSSE, TGRS, SMM, … Purcell et al. 1997 • Morphology & Flux • 3 components : - bulge - disk - PLE • Bulge morphology highly uncertain • Total flux : (1-3) x 10-3 ph cm-2 s-1 • Bulge / Disk flux ratio : 0.2 - 3.3 • Spectroscopy • centroid ~ 511 keV • Gaussian FWHM ~ 1.8-2.9 keV • positronium fraction 0.93 ± 0.04 Kinzer et al. 2001

  3. SPI/INTEGRAL image of 511 keV emission OSSE image (to scale) Knödlseder et al. 2005astro-ph/0506026 • Iteration 17 of accelerated Richardson-Lucy algorithm • 5° x 5° boxcar smoothing • Integrated 511 keV flux : 1.4 x 10-3 ph cm-2 s-1

  4. 511 keV bulge emission morphology Modelling with a 2d Gaussian l0 -0.6° ± 0.3° b0 +0.1° ± 0.3° Dl (FWHM) 8.1° ± 0.9° Db (FWHM) 7.2° ± 0.9° Db / Dl 0.89 ± 0.14 511 keV flux 1.09 ± 0.04 (10-3 ph cm-2 s-1)

  5. Galaxy models compatible with SPI data 1.17 x 10-3 ph cm-2 s-1 2.15 x 10-3 ph cm-2 s-1 1.62 x 10-3 ph cm-2 s-1 2.04 x 10-3 ph cm-2 s-1 B/D ratio : 1-3 (flux) / 3-9 (luminosity)

  6. Comparison with tracer maps Old stellar population K+M giants XRBs Young stellar population(free-free, CO, cold dust) Radio µ-waves FIR NIR V X-ray g

  7. Model : Gauss + positronium + continuum Energy 511.00 ± 0.03 keV FWHM 2.07 ± 0.10 keV Flux 10.0 x 10-4 ph cm-2 s-1 Galactic bulge spectrum

  8. Model : 2 Gauss + positronium + cont. Energy 510.98 ± 0.03 keV FWHM1 1.14 ± 0.40 keV FWHM2 5.08 ± 1.11 keV Flux1 6.9 x 10-4 ph cm-2 s-1 Flux2 3.8 x 10-4 ph cm-2 s-1 Galactic bulge spectrum • Narrow Gauss (FWHM = 1.1 keV) : • ~65 % • Thermalised positrons • Broad Gauss (FWHM = 5.1 keV) : • ~35 % • Inflight positronium formation (quenched if fully ionised) Consistent with 8000 K ISM with ionisation fraction of ~ 0.07-0.17 Churazov et al. 2005

  9. 1809 keV (26Al) 511 keV Constraints on the disk source • 44Sc decays via b+ decay (99%) • M44 ~ 4 x 10-6 M yr-1 (chem. evol.) • Morphology and escape fraction unknown • Expected : 8 x 10-4 ph cm-2 s-1 • 26Al decays via b+ decay (85%) • F511 = 0.5 x F1809 (fp = 0.93) • Expected : 5 x 10-4 ph cm-2 s-1 • Observed disk flux ~ (4-8) x 10-4 ph cm-2 s-1 • 60% - 100% of the disk flux can be explained by 26Al • Rest (if any) is comfortably explained by 44Ti • There seems to exist a pure bulge positron source !

  10. Constraints on the bulge source Wolf-Rayet stars Hypernovae / GRB Pulsars Core-collapse SNe Stellar flares CR interactionswith ISM Dark matter HMXB SN Ia LMXB Novae

  11. Constraints on the bulge source Wolf-Rayet stars Hypernovae / GRB Pulsars Core-collapse SNe Stellar flares CR interactionswith ISM Dark matter HMXB SN Ia LMXB Novae Strong disk component expected

  12. Constraints on the bulge source Wolf-Rayet stars Hypernovae / GRB Pulsars Core-collapse SNe Stellar flares CR interactionswith ISM Dark matter HMXB SN Ia LMXB Novae

  13. Constraints on the bulge source Dark matter SN Ia LMXB Novae

  14. Low-mass X-ray binaries • Positron production processes • g + g e++ e- (pair jet) • N + N’  N*  N + e+ • Uncertainties • Yield • Line shape (broad versus narrow) Observed LMXB B/D ~ 1 Grimm et al. 2002 Liu et al. 2000,2001 • B/D too small ? (completeness) • Why only LMXB and not HMXB ?

  15. Novae • Positron production processes • 13N  13C (t = 14 min, 100%) • 18F  18O (t = 2.6 hr, 97%) • 22Na  22Ne (t = 3.8 yr, 90%) • 26Al  26Mg (t = 106 yr, 85%) Yields CO (0.8 M) ONe (1.25 M) 13N 2 x 10-7 4 x 10-8 18F 2 x 10-9 5 x 10-9 22Na 7 x 10-11 6 x 10-9 26Al 2 x 10-10 1 x 10-8 Hernanz et al. 2001 • Uncertainties • B/D ratio (values up to 4 proposed for M31) M31 : 2 types of novae (bulge & disk) bulge : slow-dim, associated with CO disk : fast-bright, associated with ONe • Nova rate (20-40 per year) • Escape fractions (important for 13N and 18F) • B/D probably OK (in particular if only CO novae contribute) • 13N : if 100% escape  bulge CO nova rate 25 century-1 required(but models predict that 13N e+ are absorbed in expanding shell)

  16. Type Ia supernovae • Positron production processes • 57Ni  57Co (t = 52 hr, 40%) • 56Co  56Fe (t = 111 d, 19%) • 44Sc  44Ca (t = 5.4 hr (87 yr), 99%) Yields Ch Sub-Ch 57Ni 0.01 - 0.03 0.01 - 0.03 56Co 0.4 - 1.1 0.3 - 0.9 44Sc (7-20) x 10-6 (1-4) x 10-3 Woosley 1997; Woosley & Weaver 1994 • Uncertainties • B/D ratio (poorly known) • SN Ia explosion mechanism • SN Ia rate (0.3 - 1.1 per century) • Escape fraction (important for 57Ni and 56Co) • 57Ni : no chance for positrons to escape • 56Co : 3% escape would require bulge rate of 0.6 century-1 • 44Sc : always escape, Sub-Ch would require bulge rate of 0.5 - 2 century-1(but : overproduces galactic 44Ca abundance & makes bright 44Ti bulge) • Different types of SN Ia in bulge (underluminous) and disk (overluminous) ?

  17. Dark matter • Distribution not well known • No flux prediction • Sgr dwarf not detected

  18. General conclusions • The 511 keV sky is bulge / halo dominated (B/D > 3) • Besides bulge / halo and disk, no further 511 keV emission is observed (no PLE) • The disk component can be entierly explained by b+ decay of radioactive 26Al and 44Ti • The origin of the bulge component is still mysterious(LMXB, Novae, SN Ia, dark matter ?) • What is the bulge / halo e+ source ? • Has the bulge / halo e+ source a disk component ? • Can we learn something about SN Ia / Novae distribution and types ? • Observe nearby candidate sources (SNR, LMXB) • Deep observations at high galactic latitudes & galactic plane

More Related