1 / 20

Relaxation of intracenter excitations in monoisotopic 28 Si:P

Relaxation of intracenter excitations in monoisotopic 28 Si:P.

hana
Download Presentation

Relaxation of intracenter excitations in monoisotopic 28 Si:P

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Relaxation of intracenter excitations in monoisotopic 28Si:P S.G. Pavlov1, S.A. Lynch2, P.T. Greenland2, K. Litvinenko3, R. Eichholz1, V.N. Shastin4, B. Redlich5, A.F.G. van der Meer5, N.V. Abrosimov6, H. Riemann6, H.-J. Pohl7, G. Aeppli2, B.N. Murdin3, C.R. Pidgeon8, and H.-W. Hübers1,9 1) Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany 2) London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, England 3) Advanced Technology Institute, University of Surrey, Guildford, England 4) Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia 5) FOM-Institute for Plasma Physics, Nieuwegein, The Netherlands 6) Leibniz Institute of Crystal Growth, Berlin, Germany 7) VITCON Projectconsult GmbH, Jena, Germany 8) Department of Physics, Heriot-Watt University Riccarton, Edinburgh, Scotland 9) Institut für Optik und Atomare Physik, Technische Universität Berlin, Germany

  2. Intracenter electronic relaxation in silicon: basics Cascade capture of electrons in solids M. Lax, Phys. Rev. 119, 1502,.1960 Recombination of electrons and donors in n-type germanium G. Ascarelli and S. Rodriguez Phys. Rev. 124, 1321, 1961 Evidence of noncascade intracenter electron relaxation in shallow donor centers in silicon, S.G. Pavlov, H.-W. Hübers, P.M. Haas, J.N. Hovenier, T.O. Klaassen, R.Kh. Zhukavin, V.N. Shastin, D.A. Carder and B. Redlich, Phys. Rev. B. 78, 165201, 2008. Релаксация возбужденных состояний доноров с излучением междолинных фононов- В.В. Цыпленков, Е.В. Демидов, К.А. Ковалевский, В.Н.Шастин, ФТП 42, 1032, 2008.

  3. Relaxation of individual impurity states in silicon: experiments T*=

  4. Relaxation of individual impurity states in natural Si:P: experiments Silicon as a model ion trap: Time domain measurements of donor Rydberg states, N.Q. Vinh, P.T. Greenland, K. Litvinenko, B. Redlich, A.F.G. van der Meer, S.A. Lynch, M. Warner, A.M. Stoneham, G. Aeppli, D.J. Paul, C.R. Pidgeon and B.N. Murdin, PNAS 105, 10649, 2008.

  5. Natural linewidth of impurity transitions in 28Si:P: HR absorption spectroscopy Shallow impurity absorption spectroscopy in isotopically enriched silicon, M. Steger, A. Yang, D. Karaiskaj, M.L.W. Thewalt, E.E. Haller, J.W. Ager, III, M. Cardona, H. Riemann, N.V. Abrosimov, A.V. Gusev, A.D. Bulanov, A.K. Kaliteevskii, O.N. Godisov, P. Becker, and H.-J. Pohl, Phys. Rev. B. 79, 205210, 2009. Natural linewidth of atomic transitions   5.3ps / FWHM (cm-1)

  6. Isotopically enriched 28Si:P. • Avogadro Project • redefine the kilogram based on the lattice constant and density of 28Si • enrichment: 99.99459% • [P] ~ 51011 cm-3 41015 cm-3 • [B] ~ 51013 cm-3 • dislocation free

  7. Relaxation of individual impurity states in silicon: variation of experimental results

  8. Relaxation of individual impurity states in silicon: variation of experimental results

  9. Reason of negative contribution in pump-probe FEL1 (6ps) = 54.4 GHz FEL2 (10ps) = 31.5 GHz Si:P (FTS) = 28.2 GHz

  10. Reason of negative contribution in pump-probe

  11. Different contributions in pump-probe Absorption on 2p0c.b. transitions delivers negative contribution in probe transmission through sample -  - FEL probe + FELIX pump laser

  12. Matching FEL and impurity linewidths

  13. Reduction of negative contribution in pump-probe

  14. Two-exponential decay as step-like decay of the 2p0 state small relative absorbance: c.b. Pumped-probed state FEL probe + if two-step decay dominates: where decay rates between states are: w21: 2p0 1s(E,T2) w10: 1s(E,T2) 1s(A1) FELIX pump laser two-exp decay fit must be used ND(t)=N1s(A1)(t)+N2p0(t)+N1s(E)+N1s(T2)

  15. Two-exponential decay: 28Si:P (amplitude)

  16. Two-exponential decay: 28Si:P (decay constants)

  17. Two-exponential decay: Si:P (amplitude)

  18. Two-exponential decay: Si:P (decay constant)

  19. Optically pumped donor intracenter silicon lasers Phys. Rev. Lett. 84, 5220 (2000) Appl. Phys. Lett. 80, 4717 (2002) J. Appl. Phys. 92, 5632 (2002) Appl. Phys. Lett. 84, 3600 (2004)

  20. Conclusions: • Decay of the 2p0 state in Si:P is very likely two-step process • Decay time on the first step (2p01s(E), 1s(T2)) is about 200 ps for 28Si:P and about 150 ps for Si:P • Decay time on the first step (1s(E), 1s(T2) 1s(A1) ) is about 50 ps for 28Si:P and about 50 ps for Si:P • experiments: different doping (done, not yet analyzed) • two-color time-resolved experiments • modeling of relaxation

More Related