Properties of Determinants

DownloadProperties of Determinants

Advertisement
Download Presentation
Comments
haamid
From:
|  
(283) |   (0) |   (0)
Views: 169 | Added: 14-02-2012
Rate Presentation: 0 0
Description:
What is the determinant of a triangular matrix?. Hint: Expand on column 1. Row Operations. Multiply a row by a non zero constant.What happens to the determinant?. Row Operations: Switch two rows. Row Operations: Add a multiple of one row to another. Hint: Expand on Row 1 . Theorem 3. Multiplication of a row by a constant multiplies the determinant by that constant. Switching two rows changes the sign of the determinant. Replacing one row by that row plus a multiple of another row has no ef32642
Properties of Determinants

An Image/Link below is provided (as is) to

Download Policy: Content on the Website is provided to you AS IS for your information and personal use only and may not be sold or licensed nor shared on other sites. SlideServe reserves the right to change this policy at anytime. While downloading, If for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.











- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -




1. Properties of Determinants What is the determinant of a triangular matrix? How do elementary row operations effect the value of the determinant? What is the determinant of an elementary matrix? What is the determinant of an invertible matrix?

2. What is the determinant of a triangular matrix?

3. Row Operations Multiply a row by a non zero constant. What happens to the determinant?

4. Row Operations: Switch two rows

5. Row Operations: Add a multiple of one row to another

6. Theorem 3 Multiplication of a row by a constant multiplies the determinant by that constant. Switching two rows changes the sign of the determinant. Replacing one row by that row plus a multiple of another row has no effect on the determinant. Proof by induction is given in the text.

7. Example ? Find |A|

9. Suppose a matrix A is not invertible. What can we say about det A? Why?

10. Theorem 4: A is invertible iff detA?0. Note ? This theorem links the determinant to the invertible matrix theorem. For instance, if the columns (or rows) of A are linearly dependent, then detA=0. So if you perform row operations so that 2 rows or columns are the same, then detA=0.

11. Proof (outline) A is invertible iff A is row equivalent to In. iff detA?0 Note that each row operation changes the determinant by some non zero factor. Since det In=1, we couldn?t have started with a determinant of 0.

12. Example 3 (from text) Find det A if

13. Theorem 5 ? If A is an nxn matrix, detAT=detA Proof: By induction. Theorem is obvious for n=1. Suppose it is true for n=k. Let n=k+1. The cofactor of a1j in A equals the cofactor of aj1 in AT because the cofactors involve kxk determinants and we?ve assumed the theorem is true for n=k. So the cofactor expansion along the first row of A equals the cofactor expansion along the first column of AT. By the principle of induction, the theorem is true for all n=1.

14. Theorem 6 ? If A and B are nxn matrices, then detAB = (detA)(detB) Proof ? Please read in text for homework. Note - det(A+B)?detA+detB

15. Homework ? Finish reading and exercises for sections 3.1 and 3.2.


Other Related Presentations

Copyright © 2014 SlideServe. All rights reserved | Powered By DigitalOfficePro