This presentation is the property of its rightful owner.
Sponsored Links
1 / 88

第七章 消除隐藏线和隐藏面的算法 PowerPoint PPT Presentation


  • 97 Views
  • Uploaded on
  • Presentation posted in: General

第七章 消除隐藏线和隐藏面的算法. 消隐 面消隐 线消隐 三维形体表示为 多边形 表面形集合 投影约定为沿着 z 轴正向的 正交 投影 消除隐藏面算法: 图象空间算法 客体空间算法. 图象空间算法对显示设备上每一个可分辨 象素 进行判断,看组成物体的多个多边形表面中哪一个在该象素上可见,即要对每一象素检查所有的表面。 客体空间算法把注意力集中在分析要显示 形体 各部分之间的关系上,这种算法对每一个组成形体的表面,都要与其它各表面进行比较,以便消去不可见的面或面的不可见部分。. 第一节 线面比较法消除隐藏线. 多面体的面可见性

Download Presentation

第七章 消除隐藏线和隐藏面的算法

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


4145369

z


4145369


4145369

  • kn 0/2


4145369

nk

,


4145369

ABCD000201400,(3,2,1)z,

k=(0,0,1),DAB:


4145369

, DAB.DBC,ADC,ACB


4145369


4145369


4145369


4145369

XvX

,

xvyv


4145369

zvzv

z z


4145369

l

;

2

;


4145369

L1X=x1Y=y1Z=z1+t


4145369

t0,Z1 t0,Z1>


4145369

xvyvzv


4145369

MMyu(j)


4145369


4145369

x


4145369

cM


4145369


4145369

If then

If then

xx


4145369

ABEAEEB


4145369

A

D

E

B

C


4145369


4145369

X=Xk

B

Z=Zi


4145369

1.z

2. z

3. z


4145369


4145369

zP

QPzQP


4145369

1x

2y

3. PQ

4. QP

5. z=0


4145369

PQPQ


4145369

P

Q


4145369

//


4145369

8

1 0 0

1 1 0

1 1 1

1 0 1

0 0 0

0 1 0

0 1 1

0 0 1

6

1 2 3 4

2 6 7 3

6 5 8 7

5 1 4 8

4 3 7 8

5 6 2 1


4145369

4

vertexpatch


4145369

Readkeyboard

Vertices


4145369

Patches

Gmode

Setpen


4145369

Painting

Amode


4145369

z

z()zzzz


4145369

x,y,

1 xyzxy

2zxyzxy

1zx yz

2z(xyx y


4145369

xyz


4145369

x,yz1:

x+x,y


4145369

z

zz

for ()

{

for(x,y)

{ Z(x,y)

if(Z(x,y)Z(x,y))

{ Z(x,y)Z(x,y)

(x,y)(x,y)}

}

}


4145369


4145369

ETETyx

1yxxmin

2 yymax

3xxx

4.


4145369

E

B

D

F

C

A

ABCDEF,111025105310345465625

zv=0


4145369


4145369

7.21


4145369

PT(polygon Table)

1x,yz

2

3. \


4145369

ETPT:yAETxcolor


4145369

1 AETi1sp

2 iAA/FAFAAPs1FAFAPAs1


4145369

3 s=05s=14PP

4 ii+1xP


4145369

5 i1iy=ymax2y=47.1


4145369

i

s

P

PT

FABC FDEF

1

1

(ABC)

true

1 3ABC

2

2

(DEF,

ABC)

true

3DEFP3

3 DEF

3

1

(DEF)

false

3 5DEF

4

0

( )

false


4145369

3GHIJABCDEFy=CB3DEFGHIJDEFGHIJ


4145369


4145369

AET7.21r+1r+2AETABCBDEFErr+1DECBCBDE


4145369

KLMKLLMLMMML


4145369


4145369


4145369

1.

2.

3.,

4.


4145369


4145369

1

2.


4145369

3.

4. zzz


4145369

4


4145369

zz


4145369

Wanock5


4145369


4145369

AB


4145369

WeilerAtherton


4145369


4145369

// BSP

BSPbinary space-partitioning

BSP


4145369

P1P1P1BDP1P2b


4145369

BSPBSP


4145369

//

01234567


4145369

5

4

1

0

7

2

3

0123


4145369

040115


4145369

6

5

1

4

0

1

7

2

3

2

3


4145369


4145369

//


4145369

ray casting


4145369


4145369


  • Login