1 / 35

Towards neutrino mass determination by electron capture

Towards neutrino mass determination by electron capture. Yuri Novikov PNPI (St.Petersburg ) and GSI (Darmstadt) Symposium in Milos: May 20, 2008. Agenda. Ideas Experimental base Experimental feasibility First experimental steps Problems NeuMa programme and collaboration.

gyala
Download Presentation

Towards neutrino mass determination by electron capture

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Towards neutrino mass determination by electron capture Yuri Novikov PNPI (St.Petersburg)and GSI (Darmstadt) Symposium in Milos: May 20, 2008

  2. Agenda • Ideas • Experimental base • Experimental feasibility • First experimental steps • Problems • NeuMa programme and collaboration Yu. Novikov,Milos – 20.05.08

  3. History of m measurements 163Ho 35S 37Ar & 22Na 163Ho 3H 163Ho 193Pt 3H 3H 187Re 3H 3H 3H Yu. Novikov,Milos – 20.05.08

  4. Do we need to measure the neutrinomass since the antineutrinomass limit is known? Yes ! • To confirm the results taken from tritium measurements (with completely different systematic uncertainties). • To check the conservation of CPT: • mν= mνˉ? significant difference might be expected because of neutrino mass smallness · Yu. Novikov,Milos – 20.05.08

  5. Auger electron Atomic process Nuclear process Electron vacancy N+1 N Z-1 Z Time range start 0 10-18s 10-10s courtesy of J. Khuyagbaatar Yu. Novikov,Milos – 20.05.08

  6. (Z-1,A)g + Bi Z,A Qn (Z-1,A)h The less Qν, the bigger contribution of mn Qe Bi Qe – Bi should be as small as possible Qe < 100 keV (Z-1,A)g En = K + mn = Qe - Bi Qe: (precision ~1 eV) mn < 10 eV En Bi – еlectron binding energy: (precision ~1 eV) smaller En higher contribution of mn General information on the capture energetics (Z,A) + e (Z-1,A)h + En Qn = En + mn = Qe – Bi (Z,A) Courtesy of S. Eliseev Yu. Novikov,Milos – 20.05.08

  7. The best candidate for mν-measurement T1/2=4.57 ky Qε=2.4-2.8 keV Yu. Novikov,Milos – 20.05.08

  8. Ultra-precise mass measurements Yu. Novikov,Milos – 20.05.08

  9. Frans Michel Penning Hans G. Dehmelt end cap Typical frequencies q = e, m = 100 , B = 6 T f- ≈ 1 kHz f+≈ 1 MHz ring electrode Principle of Penning Trap Mass Spectrometry B Cyclotron frequency: • PENNING trap • Strong homogeneous magnetic field • Weak electric 3D quadrupole field q/m (courtesy of K. Blaum) Yu. Novikov,Milos – 20.05.08

  10. High resolution bolometers Yu. Novikov,Milos – 20.05.08

  11. Low temperature micro-calorimeters x-ray Temperature rise upon absorption: thermometer Recovery time: thermal link absorber • Operation at low temperatures (T<100mK): • small heat capacity • large temperature change • small thermal noise thermal bath (courtesy of L. Fleischmann) Yu. Novikov,Milos – 20.05.08

  12. Metallic magnetic calorimeters Energy Magnetic Field B • Very simple theory : • Sensor material consists of magnetic moments only • 2 level systems • Zeeman like energy splitting E = mB • 1.5 eV Energy deposition of 100 keV Number of flips  1011 Change of magnetic moment (courtesy of L. Fleischmann) Yu. Novikov,Milos – 20.05.08

  13. Advantages of cryogenic micro-calorimeters • Very high energy resolution (σE≈ 1 eVfor Е ≈ 1 keV). • Very small internal background due to small detector dimensions(≈ 100 μ). • Due to long pulse rise (≈ 1 μs),all the atomic (molecular) de-excitations, being shorter than ns, are detected. • Small detector dimensions allow the use of a multi-detector system, which avoids pile-up background. Yu. Novikov,Milos – 20.05.08

  14. Simulated calorimetric spectrum of 163Ho→163Dy Yu. Novikov,Milos – 20.05.08

  15. How can we derive the neutrino mass from electron-capture ? Total capture probability for allowed transition: Capture ratios for '2' and '1' atomic levels: , where Wi = Qε - Bi (i = 1,2) η can be determined from – ratio, where Penning trap Calorimeter Calorimeter + Spectroscopy Yu. Novikov,Milos – 20.05.08

  16. Dependence of neutrino mass value on Qe and λM2/λM1 for 163Ho-decay Yu. Novikov,Milos – 20.05.08

  17. Calorimetric spectrum dS/dECand "figure of merit" -is electron binding energy for the hole "h" A. De Rujula and M. Lusignoli Yu. Novikov,Milos – 20.05.08

  18. Shapes for “calorimetric” lines of 163Ho→163Dy for Qε=2580 eV Yu. Novikov,Milos – 20.05.08

  19. "Figure of merit" q for different Qε and m 163Ho→163Dy Yu. Novikov,Milos – 20.05.08

  20. Data acquisition time T for S=20 events at the edge Yu. Novikov,Milos – 20.05.08

  21. Feasibility of the Programme Yu. Novikov,Milos – 20.05.08

  22. Most precise mass measurements worldwide: • performed with Penning traps • stable nuclides • closed systems • detection of the image current (courtesy of S. George) Yu. Novikov,Milos – 20.05.08

  23. Energy resolution Counts / 0.24 eV Counts / 0.12 eV Energy E [keV] Energy E [eV] (courtesy of L. Fleischmann) Yu. Novikov,Milos – 20.05.08

  24. Search for new candidates Yu. Novikov,Milos – 20.05.08

  25. Differences in the neutrino mass determination in β- and EC- processes m < Qec- Bi m < Qβ Yu. Novikov,Milos – 20.05.08

  26. T1/2=444 y 80.725 K 0+ 194Hg Qε=(69±14) keV En=(-12±14) keV 1- 194Au T1/2=4.57 ky T1/2=50 ky 0+ 202Pb En≈(-35±15) keV Qε=(50±15) keV Qε=2.6 keV En≈0.55 keV 15.35 L1 2- 202Tl Candidates with evaluated Qe<100 keV Yu. Novikov,Milos – 20.05.08

  27. Г εε Bi(2) Qεε Bj(1) (Z-1,A) (Z-2,A) (Z,A) Resonant neutrinoless double-capture Yu. Novikov,Milos – 20.05.08

  28. Candidates for resonant neutrinoless double-capture Yu. Novikov,Milos – 20.05.08

  29. First steps in implementation Yu. Novikov,Milos – 20.05.08

  30. First steps implemented • FaNtOME – conception for Facility for Neutrino Oriented Mass Exploration, based on 5-Penning trap spectrometer, has been elaborated at MPI-K (Heidelberg). • Careful analysis of possible pile-up background for 163Ho-decay in the calorimetric spectrum has been performed. • The investigation of calorimetric spectrum of 163Ho, implanted in absorber by irradiation from ISOLDE mass separator at CERN, was started in Genova. • The background for micro-calorimeter was measured in the keV-region. The result 1 event/100 days, obtained in Genova-Uni, opens very promising possibility to implement long-term measurements. • Experiments to search for new candidates for neutrino mass determination by electron capture are prepared at CERN (ISOLTRAP). The runs are scheduled for 2008. Yu. Novikov,Milos – 20.05.08

  31. Problems, which hopefully can be solved • Systematic uncertainty in the Penning trap measurements (can be solved by using of 5 Penning trap system) • Perturbations to spectra and decay rates in the calorimetric absorbers (effect can be measured by using an external source) • Pile-up background (can be measured independently) • Other problems ??????? Yu. Novikov,Milos – 20.05.08

  32. We are eager to overcome forthcoming difficulties, meanwhile the neutrino physics community should be patient to long-term efforts and should be keenly aware that "Rome was not built in a day" Yu. Novikov,Milos – 20.05.08

  33. Conclusions • Absolute neutrino mass measurements by electron capture have two motivations: • to confirm the existing limit for mass taken from the antineutrino • mass measurements (if CPT is conserved), • to check the CPT conservation itself. • To implement this task, a combination of measurements with new generation Penning trap systems and low energy cryogenic micro- calorimeters is proposed. • First steps in the NeuMa project show the feasibility of neutrino mass determination at the level ≤10 eV for electron capture in 163Ho. • We can expect further improvements in the development of ingenious technique, and also in the search for new candidates for precise neutrino mass determination. • The proposed method could also be used to search for neutrinoless resonant double electron capture. Yu. Novikov,Milos – 20.05.08

  34. CollaborationNeuMa • GSI, Darmstadt─(H.-J. Kluge) • MPI-K, Heidelberg ─(K. Blaum) • University, Genoa ─(F. Gatti) • KIP, Uni-Heidelberg ─(C. Enss) • PNPI and University, St.Petersburg ─(Yu. Novikov) • ISOLDE, CERN ─(A. Herlert) • JYFL, Jyväskylä─(J. Äystö) • University, Mainz ─(K. Blaum) Expected cost of NeuMa program is a few M€ Yu. Novikov,Milos – 20.05.08

  35. ν Nuclear Physics High Energy Physics Atomic Physics Astro Physics Particle Physics Fortes Fortuna juvat !!! Yu. Novikov,Milos – 20.05.08

More Related