1 / 57

第三节 分子生物学的中心法则 The Central Dogma of Molecular Biology

第三节 分子生物学的中心法则 The Central Dogma of Molecular Biology. 1) 中心法则总述 2) DNA 自我复制 3) 从 DNA 到 RNA( 转录 ) 4) 遗传密码 5) 从 RNA 到蛋白质 ( 翻译 ) 6) 基因. The Central Dogma of Molecular Biology. 一、中心法则简介. 二、 DNA 复制. DNA Replicating Itself .

gitel
Download Presentation

第三节 分子生物学的中心法则 The Central Dogma of Molecular Biology

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 第三节 分子生物学的中心法则The Central Dogma of Molecular Biology

  2. 1) 中心法则总述 2) DNA自我复制 3) 从DNA到RNA(转录) 4) 遗传密码 5) 从RNA到蛋白质(翻译) 6) 基因

  3. The Central Dogma of Molecular Biology 一、中心法则简介

  4. 二、DNA复制

  5. DNA Replicating Itself Replication,复制:在亲代DNA双链的每一条链上按碱基配对而准确地形成一条新的互补链,结果生成两个与亲代链相同的DNA双链。

  6. DNA复制示意图

  7. DNA的半保留复制 在DNA复制时,亲代DNA的双螺旋先解旋,然后以每条链为模板,按照碱基配对原则,在这两条链上各形成一条互补链。在每一个新形成的双螺旋中,一条链是从亲代DNA来的,另一条是新形成的。

  8. DNA的半不连续复制 Each replication fork has a leading and a lagging strand leading strand (synthesized continuously) replication fork replication fork 5’ 3’ 5’ 3’ 3’ 5’ 5’ 3’ 3’ 5’ 3’ 5’ lagging strand (synthesized discontinuously) • The leading and lagging strand arrows show the direction • of DNA chain elongation in a 5’ to 3’ direction • The small DNA pieces on the lagging strand are called • Okazaki fragments (100-1000 bases in length)

  9. RNA primer direction of leading strand synthesis 3’ 5’ replication fork 5’ 3’ 3’ 5’ direction of lagging strand synthesis

  10. Movement of the replication fork 5’ 3’ 5’ 3’

  11. Movement of the replication fork 5’ RNA primer Okazaki fragment RNA primer

  12. 复制体(replicon) 在DNA复制过程中,由众多的酶和蛋白质参与DNA的复制作用。 复制体的基本活动包括: 1)双链的解开; 2)RNA引物的合成; 3)DNA链的延长; 4)切除RNA引物,填补缺口,连接DNA片段; 5)切除和修复错配碱基。

  13. 三、转录 • Transcription: making an RNA copy of a DNA sequence Transcription,转录:以DNA为模板,按碱基配对将其中所含的遗传信息传给RNA,形成一条与DNA链互补的mRNA链的过程。

  14. 编码链,有义链 模板链,无义链

  15. Transcription of a segment of DNA to form a molecule of RNA. 1)RNA聚合酶与DNA模板的结合

  16. 2)起始

  17. 3)延长

  18. 4)终止

  19. Transcription closed promoter complex,封闭的启动子复合物 RNA polymerase,RNA聚合酶 open promoter complex,开放的启动子复合物 initiation elongation termination RNA product RNA chains are synthesized in a 5’ to 3’ direction

  20. Prokaryotic RNA polymerase structure RNA polymerase of E. coli is a multisubunit protein SubunitNumberRole a 2 uncertain b 1 forms phosphodiester bonds b 1 binds DNA template s 1 recognizes promoter and facilitates initiation a2bb’s a2bb’ + s holoenzyme core polymerase sigma factor

  21. The sigma cycle • closed promoter complex (moderately stable) • the sigma subunit binds to the -10 region s RNA polymerase holoenzyme (+ s factor) • open promoter complex (highly stable) • the holoenzyme has very high affinity for • promoter regions because of sigma factor s • once initiation takes place, RNA polymerase does • not need very high affinity for the promoter • sigma factor dissociates from the core polymerase • after a few elongation reactions s • elongation takes place with • the core RNA polymerase • sigma can re-bind • other core enzymes

  22. 四、遗传密码 • The Genetic Code: Translation of RNA code into protein

  23. 三联体密码子的特点: 1)方向性 2)无标点性 3)简并性 4)通用性 5)摆动性 起始密码子:ATG。 终止(无义)密码子: UAAUGAUAG。 同义密码子: 编码同一个氨基酸 的几个密码子。

  24. 五、翻译 Translation is the process of converting the mRNA codon sequences into an amino acid sequence. Translation,翻译:在RNA控制下,根据核酸链上每三个核苷酸决定一个氨基酸的三联体密码规则,合成出具有特定氨基酸顺序的蛋白质肽链的过程。

  25. Protein Synthesis and Protein Processing a). RNA structure b). Protein synthesis i). Initiation of protein synthesis ii). Peptide bond formation; peptidyl transferase iii). Elongation and termination

  26. RNA 核糖体是蛋白质生物合成的场所; mRNA是合成的模板; tRNA是模板与“合成原料”氨基酸之间的接合体。

  27. mRNA

  28. rRNA 16S (small ribosomal subunit) 23S (large ribosomal subunit) 5S (large ribosomal subunit) rRNA是构成核糖体的骨架。 原核生物的核糖体为70S,由50S和30S的大小亚基组成;真核生物的核糖体为80S,由60S和40S的大小亚基组成。

  29. Ribosome structure P P Large subunit(60S) P P P P P P A P-site peptidyl tRNA site A-site aminoacyl tRNA site 5’ mRNA Small subunit(40S) Ribosome with bound tRNAs and mRNA

  30. The model of tRNA. a.a. +tRNA+ATP 氨酰-tRNA+AMP+PPi 氨酰-tRNA合成酶 氨酰-tRNA合成酶能识别tRNA,并催化反应。 对L-氨基酸有极高的专一性,每种氨基酸都有一个专一的酶。 氨酰-tRNA合成酶的高度专一性,防止在蛋白质合成时错误的氨基酸掺入多肽。

  31. Secondary structure Tertiary structure tRNA

  32. Protein synthesis • 起始 • 延长 • 终止 肽链合成的方向是N->C, mRNA信号被转译的方向是5`->3`。 一个新生肽链的诞生,除了必须有mRNA模板,tRNA及核糖体外,还需要许多蛋白因子。 如,起始因子(IF),延长因子(EF)和终止因子(RF)等的参与。

  33. Protein Synthesis

  34. Initiation of protein synthesis: mRNA binding M Initiator tRNA bound to the small ribosomal subunit with the eukaryotic initiation factor-2 (eIF2) eIF2 40S subunit The small subunit finds the 5’ cap and scans down the mRNA to the first AUG codon AUG 5’ cap mRNA

  35. 60S subunit • the initiation codon is recognized • eIF2 dissociates from the complex • the large ribosomal subunit binds eIF2 M AUG 5’ mRNA 40S subunit

  36. A M 氨酰-tRNA AUG GCC 5’ mRNA M A • aminoacyl tRNA binds the A-site • first peptide bond is formed • initiation is complete AUG GCC 5’ mRNA

  37. Peptide bond formation • peptide bond formation is catalyzed • by peptidyl transferase(肽基转移酶) • peptide bond formation results in a shift • of the nascent peptide from the P-site • to the A-site P-site A-site N NH2 CH3-S-CH2-CH2-CH O=C O tRNA NH2 CH3-CH O=C O tRNA C A-site NH2 CH3-S-CH2-CH2-CH O=C OH tRNA NH CH3-CH O=C O tRNA P-site

  38. A Elongation P • following peptide bond formation • the uncharged tRNA dissociates • from the P-site P P P P • the ribosome shifts one codon along • the mRNA, moving peptidyl tRNA • from the A-site to the P-site; this • translocation requires the • elongation factor EF2 UCA GCA GGG UAG EF2 EF1 • the next aminoacyl tRNA then • binds within the A-site; this tRNA • binding requires the elongation • factor EF1 P P P P P • energy for elongation is provided by • the hydrolysis of two GTPs: • one for translocation • one for aminoacyl tRNA binding UCA GCA GGG UAG

  39. Termination RF P P P • when translation reaches the stop • codon, a release factor (RF) binds • within the A-site, recognizing the • stop codon P P UCA GCA GGG UAG P P P P P P P P • release factor catalyzes the hydrolysis • of the completed polypeptide from • the peptidyl tRNA, and the entire • complex dissociates UCA GCA GGG UAG

  40. 六 基 因

  41. Gene • Gene 基因,遗传功能的单位。它是一种DNA序列,在有些病毒中则是一种RNA序列,它编码功能性蛋白质或RNA分子。 • Genome 基因组,染色体组,一个生物体、细胞器或病毒的整套基因;例如,细胞核基因组,叶绿体基因组,噬菌体基因组。

  42. 外显子 内含子

  43. 分子生物学基本知识复习 DNA双螺旋 DNA是英文 (Deoxyribonucleic Acid) 的缩写,中文译为脱氧核糖核酸,是生物的基本遗传物质。DNA分子是双链的螺旋分子。 每一条链的基本组成单位为核苷酸,由碱基、脱氧核糖和磷酸基团三部分组成。共有4种不同的碱基:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)。

  44. 分子生物学基本知识复习 基因 遗传功能的单位,它是一段编码蛋白质或RNA分子的DNA序列。 蛋白质 执行生物功能的最重要的生物大分子之一,它是单链状分子,由20种不同的氨基酸组成。

  45. 翻译 转录 DNA RNA 新生肽 复制 逆转录 折叠 DNA cDNA 蛋白质 分子生物学基本知识复习 中心法则 遗传信息由DNA通过mRNA向蛋白质流动。 基因表达 按基因编码的信息在生物体内合成蛋白质的过程

More Related