Loading in 5 sec....

Student Learning Objectives (SLO) Resources for Mathematics PowerPoint Presentation

Student Learning Objectives (SLO) Resources for Mathematics

Download Presentation

Student Learning Objectives (SLO) Resources for Mathematics

Loading in 2 Seconds...

- 106 Views
- Uploaded on
- Presentation posted in: General

Student Learning Objectives (SLO) Resources for Mathematics

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Student Learning Objectives (SLO)

Resources for

Mathematics

Teachers are at the heart of a child’s education and profoundly impact student achievement. Thus, a high priority is placed on the enhancement of our teachers’ professional practices and the structures that support them.

- Classroom Observations
- Core Professionalism
- Tripod Student Survey
- Working Portfolio (non-classroom only)

- Hawaii Growth Model
- Student Learning Objectives

- Student
- Growth
- and
- Learning

- Teacher Practice

- Educator Effectiveness Data

- Improved Student Outcomes

- Are teacher designed
- content-driven goals
- set at the beginning of a course
- that measure student learning through an interval of time
(i.e. one school year or one semester).

- support the achievement and growth of all students that aligns to daily instruction and progress monitoringwith specific prioritized goals

SLO Process

Hawaii Department of Education

The development of an SLO begins with identifying a big idea, a learning goal and the Common Core standard(s) being targeted.

A declarative statement that describes a concept or concepts that transcend grade levels in a content area and represents the most important learning of the course.

The Smarter Balanced Assessment Consortium established four claimsregarding what students should know and be able to do to demonstrate college and career readiness in mathematics.

- The four claims represent the big ideas that the Smarter Balanced assessments are attempting to measure

Smarter Balanced Claims

Claim #1: Concepts and Procedures

Students can explain and apply mathematical concepts and interpret and carry out mathematical procedures with precision and fluency.

Claim #2: Problem Solving

Students can solve a range of complex and well-posed problems in pure and applied mathematics, making productive use of knowledge and problem solving strategies.

Smarter Balanced Claims

Claim #3: Communicating Reasoning

Students can clearly and precisely construct viable arguments to support their own reasoning and to critique the reasoning of others.

Claim #4: Modeling and Data Analysis

Students can analyze complex, real-world scenarios and can construct and use mathematical models to interpret and solve problems.

A statement that describes what students will know, understand or be able to do by the end of the interval of instruction.

- The learning goal is grade-level specific
- Whereas the big idea transcends grade levels (i.e., big ideas are important to the discipline mathematics and applicable to any grade level)

- Go to the HIDOE Standards Toolkit
- http://standardstoolkit.k12.hi.us

- Point to “Common Core” and click on Mathematics

Select your grade level

Big Idea: Problem Solving(Claim #2)

- Students can solve a range of complex and well-posed problems in pure and applied mathematics, making productive use of knowledge and problem solving strategies.
Learning Goal: A cluster in the Fractions domain

- Students will be able to build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.
Standards:

- 4.NF.3: Understand a fraction a/b with a > 1 as a sum of fractions 1/b.
- 4.NF.4: Apply and extend previous understandings of multiplication to multiply a fraction by a whole number.
- Note: both of these standards have a sub-part that focuses on problem solving.

- SLOs should address learning targets that are at a minimum of a DOK level 2;
- If there are DOK level 3 targets for the course or grade level, those should be selected.

Depth

Of

Knowledge

Norm

Webb

Illustrative Mathematics: http://www.illustrativemathematics.org

Learn Zillion: http://learnzillion.com

Inside Mathematics: http://www.insidemathematics.org

Mathematics Assessment Project:

http://map.mathshell.org/materials/index.php

Smarter Balanced Assessment Consortium:

http://www.smarterbalanced.org/smarter-balanced-assessments/

Open Education Resources: www.oercommons.org

Bill McCallum’s blog: commoncoretools.me

General high-impact instructional practices (that all mathematics teachers should routinely employ) for any mathematics topic:

- respond to most student answers with, “Why?” or “How do you know that?” or “Tell me what you mean by that.” In other words, teachers should routinely use students’ responses (when appropriate) as a springboard to provoke further discussion about the mathematics;
- conduct daily cumulative review of critical and prerequisite skills and concepts at the beginning of each lesson (e.g., a 5-minute warm-up task);
- elicit and acknowledge the value of alternative approaches to solving mathematical problems so that students are taught that mathematics is a sense-making process for understanding “why” (not merely memorizing the right procedure for the one right answer);
- provide multiple representations (models, diagrams, number lines, tables, graphs, and symbolic expressions or equations) of all the mathematical work to support the visualization of skills and concepts and helping students make connections between concrete, pictorial and abstract representations;

Instructional Strategies

General high-impact instructional practices (that all mathematics teachers should routinely employ) for any mathematics topic:

- create language-rich classrooms that emphasize terminology, vocabulary, explanations and solutions;
- develop number sense by asking for and justifying estimates, mental calculations and equivalent forms of numbers;
- embed mathematical content in contexts to connect the mathematics to the real world and everyday life situations;
- use the last 5 minutes of every lesson for some form of formative assessment (e.g., an exit slip) to assess the degree to which the lesson’s objective was accomplished and to use for planning of subsequent lessons.

Instructional Strategies

Instructional practices that may be specific to a mathematics topic or learning goal:

- designing numerous opportunities for students to make connections between data represented in tables and graphs, create equations to represent apparent relationships, and discuss the relevance of specific points and the unit rate in terms of the given situation (learning activities should include tasks in which students must either generate their own data sets or do some research to find data sets for situations of interest, not simply always being given data sets to work with);
- giving students concrete and/or pictorial representations of two related quantities and asking them to determine unit rates (e.g., teacher projects onto the whiteboard a picture showing 9 one dollar bills next to 4 cans of spam);
- modeling how to set up and reason with double number lines (or double tape diagrams);

Instructional Strategies

Instructional practices that may be specific to a mathematics topic or learning goal:

- giving students a completed double number line and ask them to create a situation to match what the diagram represents;
- coordinating a small group activity in which students generate their own data (or research a topic on the internet that includes data) representing a proportional relationship and creates tables, graphs and equations to represent the relationship
- facilitating whole class discussions in which selected students present their work and others ask clarifying questions;
- using the student discussion to help summarize the lesson by comparing the different strategies used and drawing students’ attention to the way(s) we want them to think when approached with similar situations (i.e., teaching students to think generally, not just how to do specific procedures in specific situations).