The study of life
This presentation is the property of its rightful owner.
Sponsored Links
1 / 57

The Study of Life PowerPoint PPT Presentation


  • 64 Views
  • Uploaded on
  • Presentation posted in: General

The Study of Life. Chapter 1. Bio. logy. Life. Knowledge. Biology is the branch of science that studies living things. So. What is “life?”. How do scientists study it?. Living. vs. Non-living. or. Alive. vs. Dead.

Download Presentation

The Study of Life

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


The study of life

The Study of Life

  • Chapter 1


The study of life

Bio

logy

Life

Knowledge

Biology is the branch of science that studies living things

So....

What is “life?”

How do scientists study it?


The study of life

Living

vs.

Non-living

or

Alive

vs.

Dead

When talking about the qualities of “living things,” we are often talking about the species level rather than the individual level. “Skunks are living things,” rather than, “That skunk is living, the one on the road is dead.”


Activity

Activity!

  • Observe the items in the green trays. Discuss with others:

    • Is it alive? How do we know?

    • At what level of organization should this item be placed? Why?


Which sample did not contain a living organism

Which sample did NOT contain a living organism?

  • This one:

  • This one:

  • This one:

  • This one:


What level of organization is this

What level of organization is this?

  • Molecule

  • Cell

  • Tissue

  • Organ

  • Multicellular organism

  • Population

  • Community

  • Ecosystem


What level of organization is this1

What level of organization is this?

  • Molecule

  • Cell

  • Tissue

  • Organ

  • Multicellular organism

  • Population

  • Community

  • Ecosystem


What level of organization is this2

What level of organization is this?

  • Molecule

  • Cell

  • Tissue

  • Organ

  • Multicellular organism

  • Population

  • Community

  • Ecosystem


Scientific inquiry

Scientific Inquiry

  • Science is an investigation of the natural world, using evidence from nature to support explanations.

  • The methods used by scientists to investigate the natural world are called Scientific Inquiry.

  • Scientific Laws and Theories are products of scientific inquiry.


Scientific evidence

Scientific Evidence

  • Based on natural causes.

  • Uniform in time and space.

  • Perceived similarly by many people.

  • Objective, measurable.


Forming hypotheses

Forming Hypotheses

  • Scientific Inquiry is often used to test hypotheses.

  • A hypothesis is a tentative explanation for an observation.

  • A valid hypothesis must be specific, testable, and falsifiable.


Specific

Specific

  • A hypothesis is specific if it addresses particular observations and has specific variables.

  • Not specific: “Toxins in water make fish populations decline.”

  • Specific: “The herbicide glyphosate causes trout embryos to die in the egg when present in water at levels of 100 parts per million or more.”


Falsifiable

Falsifiable

  • A hypothesis is falsifiable if it can be “true or false,” either supported or rejected by evidence. Note we do not say “proven” or “disproven.”

  • Not falsifiable: “Black licorice is the best kind of licorice.” (Opinions cannot be true or false.)

  • Falsifiable: “Over half of WOU students in our biology class prefer black licorice over red.”


Let s test it

Let’s test it!

  • Black licorice

  • Red licorice

  • No preference

Which kind of licorice do you prefer?


Testable

Testable

  • A hypothesis is testable if involves specific variables in the real, physical world that can be measured directly or indirectly.

  • Not testable: “Students do poorly on exams because of bad luck.”

  • Testable: “Biology students who make outlines and concept maps while studying their textbook score 10% better on exams than students who only read the textbook.”


A hypothesis does not

A hypothesis does not…

  • …have to be “true” at the start of the experiment. We don’t know until the experiment is over whether the hypothesis is supported or not.

  • …have to explain everything. It only has to address one variable at a time. If you try to write a hypothesis that explains everything, it is no longer specific.


The study of life

Hypotheses often begin with an observation that leads to questions.


The study of life

Questions invite possible explanations.

These possible explanations are hypotheses. To be valid, a hypothesis must be specific, testable, and falsifiable – but it doesn’t have to be correct! In fact, you don’t know if it is correct or not until you test it.


The study of life

Each possible explanation — hypothesis — can give rise to a prediction, often stated in an IF...THEN format.


The study of life

A good prediction suggests a procedure that can test the hypothesis.

Scientists test hypotheses and accept or reject hypotheses based on data. They do not set out to prove hypotheses or they may bias their results.


The study of life

Once the procedures are carried out, scientists use the data to reach a conclusion regarding the hypothesis.

Notice that the hypothesis is supported rather than “proven.”


The study of life

W

O

R

K

T

O

G

E

T

H

E

R

  • Which of the following are valid hypotheses (specific, testable, falsifiable)? Explain why.

    • Salmon makes my cat throw up.

    • Coffee grounds are really good for a garden.

    • Students who attend more than 80% of lectures earn a higher final exam average than students who attend fewer than 50% of lectures.


I get good grades because i m lucky is a

“I get good grades because I’m lucky,” is a:

  • Valid hypothesis

  • Observation

  • Unfalsifiable statement


Testing hypotheses

Testing Hypotheses

  • Scientific inquiry is used to test hypotheses.

  • Scientific inquiry can be carried out by:

    • Experiments

    • Observational studies


The study of life

Experiments

  • Scientists design experiments when their questions ask, “What is the naturalcause of what I am seeing?”

  • Variables must be measurable. Results must be repeatable to be dependable.

  • Experiments use controls and replication.

“Does this fertilizer cause crops to mature faster?”

“Does pond water pH affect Daphnia survival?”


The study of life

Experiments are one type of scientific inquiry. Experiments test variables to try to find the cause of natural events.


The study of life

Observational Studies

  • Scientists design observational studies when their questions ask, “What is happening here?”

  • Observational studies may be needed to establish which variables to test in an experiment.

  • In some fields, observation may be all that is possible.

“What lived here long ago?”

“What lives here now?”


The study of life

Much of Astronomy and Paleontology involves observational science. We can’t do experiments on things out in space or that went extinct long ago.


Which of these questions would lead to an experimental study

Which of these questions would lead to an experimental study?

  • “What’s for dinner?

  • “What’s the best seasoning for roast beef?”

  • “Which cooking method will make roast beef most tender?”

  • “Is there any roast beef left?”


The study of life

Observation

Question

Hypothesis

Prediction

Experiment or

Observation

Conclusion

W

O

R

K

T

O

G

E

T

H

E

R

  • What’s happening in this picture?

  • Write an IF – THEN hypothesis and prediction based on the picture.


Laws and theories

Laws and Theories

  • In general:

    • Scientific Laws and Theories are both products of Scientific Inquiry.

    • Laws tend to be descriptions of natural phenomena in given circumstances.

    • Theories tend to be explanations of how natural phenomena work.


Two misconceptions to avoid

Two misconceptions to avoid!

  • Laws are NOT ideas or theories that are “proven.” They are NOT “better” than theories.

  • Theories are NOT guesses that have not been “proven” yet. Scientists to NOT form theories and then “desperately” try to “prove” them!


The study of life

Law of Gravity describes what happens when you drop a rock or launch a rocket at the moon.

Gravitational Theory explains why dropped objects fall toward the center of the mass of the Earth.


The study of life

Mendel’s Laws of Heredity:

Describe patterns of inheritance in terms of probability.

Darwin’s Theory of Natural Selection:

Explains why inherited traits change in populations over generations.


A unifying theory

A Unifying Theory

  • The gene pool of populations changes over time. Changing environmental conditions favor different gene combinations at different times.

  • Change in the genetics of a population from generation to generation is called “evolution.”

  • Evolution explains species diversity and underlies all of modern Biology.


The study of life

Modern evolutionary theory explains why organisms are so diverse, yet all are related.

Three processes underlie evolution: genetic variability, inheritance, and selection.


The study of life

Genetic variability in populations is normal.


The study of life

Genetic variation is inherited when DNA is passed from one generation to the next. Our DNA contains the code for all of our inheritable traits.


The study of life

Natural Selection, one mechanism that causes evolution, is a tendency for genes for traits that help an organism survive and reproduce to be passed on from generation to generation. Traits that interfere with reproductive success tend not to be passed on.


A scientific theory is

A scientific theory is:

  • Descriptive.

  • Explanatory.

  • A guess.

  • Not proven.


What is life

What is Life?

  • The concept of “living” can be difficult to define, since many qualities of living things can be seen in non-living things:

    • Crystals (non-living) can grow.

    • A thermostat (non-living) responds to the environment.


The study of life

W

O

R

K

T

O

G

E

T

H

E

R

  • On your own paper, list all the qualities that you can think of that define “living” as opposed to “non-living” in the natural world.

  • When you have finished your list, turn to a neighbor and compare lists.


Qualities of living things

Qualities of Living Things

  • Living things:

    • are complex, organized, and made up of cells.

    • maintain homeostasis.

    • respond to stimuli.

    • reproduce and grow.

    • use materials and energy.

    • as species, adapt and evolve.


The study of life

Complex and organized

All living things have DNA, which contains information to build cell parts.

Cells are the basic unit of living things.

Organisms can be single-celled, or cells can organize into tissues and organs.


The study of life

Maintain Homeostasis

Living organisms need to maintain an internal environment, such as maintaining temperature.


The study of life

Respond to stimuli

All living things have ways of sensing the environment that allow them to respond to threats and find food or favorable environments.


The study of life

Reproduce and grow

Living things produce more of their kind through reproduction. The young grow to maturity and the cycle begins again.


The study of life

Use materials and energy

In order to maintain complexity, maintain homeostasis, to grow, and to respond to the environment, organisms must take in energy and materials. Living things have a metabolism and give off waste products as they use materials.


The study of life

Still a relevant question

“What is life?” isn’t just a question that you left behind in Kindergarten.

Astrobiologists who search for signs of life on other planets look for many of the same characteristics of terrestrial life.

Microbiologists studying nanobacteria may challenge our current understanding of “life.”


The study of life

Life can be studied on many different levels.

What is the smallest level of organization that meets our criteria for “living organism?”


Is this a living thing

Is this a living thing?

  • Yes

  • No

  • Um… I’m not sure.

Influenza virus


Living

Living?

  • The classification systems described are applied to living organisms.

  • Some particles are “proto-living” – having a few of the characteristics of living things, but not quite alive.


Viruses

Viruses

HIV Virus

  • A virus has:

    • Genetic material

    • A protein coat

  • A virus lacks a metabolism and cannot reproduce on its own.

  • Much, much smaller than bacteria.

Viruses

Bacteria

Viruses infecting a bacteria cell.


Viroid

Viroid

  • A viroid is only naked RNA, often in a ring.

  • Viroids can, however, act as infectious agents. Several plant diseases are caused by viroids.


Prions

Prions

  • Prions are self-replicating proteins that cause disease (such as “mad cow” disease).

  • How prions replicate is still not fully understood.


Recap

Recap

  • Living things are complex, organized, and maintain homeostasis.

  • Scientists study living things using scientific inquiry to make observations and test hypotheses.

  • Laws and theories are the products of science.

  • Evolution is the unifying theory of modern biology.


The study of life

W

O

R

K

T

O

G

E

T

H

E

R

  • Write down something new that you have learned about:

    • hypotheses.

    • Laws and Theories in science.

    • what evolution is.


  • Login