1 / 25

Operational Implementation Requirements for Canadian Meteorological Centre Data Assimilation Fusion Meeting

This outline discusses the requirements for an operational implementation and the benefits of going operational for the Canadian Meteorological Centre. It covers data readiness, system readiness, common challenges to operational transfers, and advantages of going operational.

Download Presentation

Operational Implementation Requirements for Canadian Meteorological Centre Data Assimilation Fusion Meeting

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Transfer to Ops: Requirements at the Canadian Meteorological Centre Data Assimilation Fusion Meeting Downsview January 16-17, 2012 David Anselmo Air Quality Modelling Applications Section Meteorological Service of Canada Montréal, Québec David.Anselmo@ec.gc.ca

  2. Outline • Requirements for an operational implementation • Make the case (identify the need) • Data readiness (observations) • Top 4 • System readiness • Common challenges to ops transfers • Advantages to going operational

  3. Identify Need from Program Perspective • What? ... products are to be generated in ops • Who? ... are (potential) clients of the products • SPCs/forecasters, Weatheroffice/general public, other operational systems • Why? … • Identify the benefits of the products • Does it have to be operational to realize full benefit? • What is the importance of near real-time? • How/Where? … will users access the products • Is development necessary? • Are other groups involved?

  4. Data Readiness – Top 4 • Data availability • What is source of data? • Are transfers to CMC already established? Can they be? • Would data transfer make use of existing links to CMC? • What are protocols for data transfer from provider? • Are they reasonable/acceptable to CMC? • Bandwidth, security concerns • What is format of data? • Is it new to CMC operational systems? Is there precedence? • Is software in place to decode this format? • What are long term prospects wrt data availability? • Longevity, continuity of observing programs • Dependence on other countries (changing budgets, priorities)

  5. Data Readiness – Top 4 • Data reliability • Is upstream data processing supported by provider? • Is it supported 24/7? • How are unexpected outages or routine downtimes addressed? • What is normal frequency and duration of outages & downtimes? • What is overall percentage of data availability? • Is it acceptable for operational system? • Is it acceptable for clients (assuming a dependency develops)?

  6. Data Readiness – Top 4 • Data quality • What is usability of data? • What quality measures are in place at source? • Quality assured data • Quality controlled data • Does data arrive with pre-applied flags? • What additional measures must be applied before data can be used operationally? • Must assess negative impact on downstream users from poor quality data Assimilation system

  7. Data Readiness – Top 4 • Data timeliness • “Latency, latency, latency.” • For many apps, if data does not arrive in time, it is essentially useless • Define what is “late” for the intended application • Concept of a cut-off • For some programs T+9h, for others T+30min Operational Near Real-Time • Is the entire transmission system “operationally capable”? • Though, it need not be operational!! (Ex. satellite)

  8. Analysis is transmitted Trial Field is generated Analysis is generated *Image courtesy CMDA/CMC Assimilation cycles at the CMC T+ 1:50 at 7:50Z Cut-offs Global cycle R106 R200 Regional cycle T+9 at 09Z T+2:30 at 02:30Z G200 G100 T+ 2:05 at 14:05Z T+ 2:05 at 14:05Z R112 R206 R100 G218 G206 R218 T+6 à 12Z T+6 at 00Z G112 G212 T+ 1:50 at 19:50Z T+2:30 at 14:30Z T+8:15 at 20:15Z R118 R212

  9. System Readiness • Applies to applicant system as well as host environment • CPOP considerations (Comité des passes opérationelles et parallèls) • Advance planning • Resource allocations (human & computer) • Balance/coordination with other implementation requests • Initial proposal 12-18 months in advance • Coordination with existing operational components • Impacts & dependencies between upstream & downstream systems • Ex. Global model, Regional model, AQ model, UMOS, OA, etc • Regional SPCs (forecast scheds), Weatheroffice, etc • Commonality of working environment (tools) • Research  Development  Operations • To reduce AMAP duplication of work; streamline implementations • Ex. Job sequencer (OCM/Maestro)

  10. System Readiness • System diagnostics • Monitoring of the reliability, quality, timeliness of input • Performance measures • Routine verification of quality of final products

  11. System Readiness • Documentation • Creation of standards for evaluation and future upgrades • What are conditions for implementations? • Define procedures for future parallel runs (seasons, length of time, etc.) • Verification scores & thresholds • Against observations/analyses • Subjective evaluations by A&P • Identify dependant systems that must undergo impact assessments with every implementation • Support documentation • Assist 24/7 support teams (NetOps, CMOI, A&P) • Problem scenarios & remedy procedures • Contingencies for data or system outages • GENOT, Technical note, CMC product guide

  12. System Readiness • Outreach • Presentation to CMC building prior to formal CPOP proposal • Present in detail the science and implementation plans • Present future directions • 50 minutes • Formal CPOP proposal for parallel run • Brief summary of science and implementation plan • 15-20 minutes • Voted on by CPOP members

  13. Common Challenges to Ops Transfers • Each implementation = additional cost • Competition for limited resources • The first implementation is resource intensive • Often requires significant adaptation to conform to operational expectations • New data types & formats & paradigms • Tests communication links between R, D, and O • Maturity or lack thereof of component(s) • Observation infrastructure, robustness of methodology, etc. • Increased complexity for assimilation systems • Marriage of 3 components: observations, model, methodology • Adaptation to continual evolution of… • Computing environment • Upstream/downstream systems

  14. Advantages to Ops Status • Demonstrates important value/purpose of system • Provides continuous monitoring to identify issues with data • Quality, timeliness, etc. • In turn, opportunities to improve data stream (feedback to data providers) • Improves product availability & visibility • Can be supportive to other operational systems • Ex. sensitivity of GEM-MACH has proven an effective means of debugging dynamics & physics libraries shared by other models

  15. Thanks! David Anselmo Air Quality Modelling Applications Section Meteorological Service of Canada Montréal, Québec David.Anselmo@ec.gc.ca

  16. Extras

  17. Operational Observation Data Streams

  18. Surface Obs Data Transfer – Canada • Source networks for surface data: • Metro Vancouver (DRDAS) • BC MoE (DRDAS) • Alberta Env (9 air sheds, CASA server) • Saskatchewan Env (DRDAS) • Manitoba Conservation (moving to DRDAS) • Ontario MoE (DRDAS) • Ville de Montréal & Québec MDDEP (via Québec Region) • New Brunswick, PEI, Nova Scotia, Newfoundland (via Atlantic Region) • CAPMoN • Hourly observations • Species: O3, PM2.5, PM10, NO2, SO2, H2S, TRS, CO, NO Stns: 175, 165, 35, 135, 70, 5, 20, 30, 75

  19. Surface Obs Data Transfer – Canada • Format: AIRNow ‘OBS’ ASCII • Processed in near real-time at 40 mins past hour • Used to feed: • AQHI national forecast program • UMOS • Model verification • Objective analysis system for surface pollutants

  20. AQHI availability – Pacific Region • Mean 6-month availability Nov 2010: 78% • Mean 6-month availability Jan 2012: ?? DRDAS

  21. AQHI availability – Prairie Region • Mean 6-month availability Nov 2010: 88% • Mean 6-month availability Jan 2012: ??

  22. AQHI availability – Ontario Region • Mean 6-month availability Nov 2010: 97% • Mean 6-month availability Jan 2012: ??

  23. AQHI availability – Quebec Region • Mean 6-month availability Nov 2010: 93% • Mean 6-month availability Jan 2012: ??

  24. AQHI availability – Atlantic Region • Mean 6-month availability Nov 2010: 84% • Mean 6-month availability Jan 2012: ??

  25. Surface Obs Data Transfer – US • US obs retrieved from AIRNow Gateway • www.airnowgateway.org • Data in ‘AQCSV’ ASCII format • Improvement over previous ‘OBS’ format • Hourly observations • Species: • Primarily O3 and PM2.5 • Includes other pollutants and meteorology for select stations • Availability of data in near real-time: • ~80% after 1 hour • ~95% after 2 hours • Used to feed: • Model verification • Objective analysis system for surface pollutants

More Related