1 / 43

Quantum Mechanics (量子力学)

Quantum Mechanics (量子力学). Thanks to select this course!. Welcome to you!. 黄仕华. 凝聚态物理研究所 数理学院新大楼 417 室 电话: 2298929 E - mail : huangshihua@zjnu.cn. 教材及参考书. 教材: 《Quantum mechanics an introduction》 (Third Edition) Author : Walter Greiner

gerd
Download Presentation

Quantum Mechanics (量子力学)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Quantum Mechanics (量子力学)

  2. Thanks to select this course! Welcome to you!

  3. 黄仕华 • 凝聚态物理研究所 • 数理学院新大楼417室 • 电话:2298929 • E-mail:huangshihua@zjnu.cn

  4. 教材及参考书 教材:《Quantum mechanics an introduction》 (Third Edition) Author:Walter Greiner Springer, 1994 参考书:1、曾谨言:《量子力学导论》 1998年,北京大学出版社。 2、周世勋:《量子力学教程》 1979年,高等教育出版社。

  5. Outlines (内容提要) 1. Introduction 2. Wave Function (波函数) 3.Operators of Mechanics Quantity(力学量 的算符) 4.Schrödinger Equation (薛定谔方程) 5. The Harmonic Oscillator (谐振子) 6. Presentation of Mechanics Quantity (力学量的表象) 7. Perturbation Theory (微扰论) 8. Spin and Identical Particles (自旋与全同粒子)

  6. Chapter I Introduction 1.1 The foundation of Quantum mechanics. 1.2 Photoelectric effect and Einstein’s quanta theory. 1.3 Compton effect. 1.4 Radiation of blackbody and Planck’s quanta theory. 1.5 Ritz Combination Principle. 1.6 The Franck-Hertz Experiment (1913) 1.7 The Stern-Gerlach Experiment (1921) 1.8Bohr model of atom structure. 1.9Wave aspects of Corpuscle.

  7. 1.1 The foundation Quantum mechanics 1.1-1 Development of QM Newton (1) Classic Physics • Motions of mechanics objects • Electromagnetic theory • Optics—wave theory • Thermal and Statistical mechanics Maxwell electromagnetic wave theory Problems: blackbody radiation; photoelectric effect, atom spectrum, etc.

  8. 1.1-2 The significance of learning Quantum mechanics

  9. Definition: Rules of corpuscle’ motion , such as atoms, molecules, nucleus, and basic particles.

  10. 1.1-3 Quantum devices Z Si Cap Si 衬 底 Si 间 隔 层 Si Buf. GeSi GeSi • Optics productions • Laser, Quantum Wells Laser, Quantum dots detector 具有阈值低、效率高、线宽窄、波长短等一系列特点,现已广泛应用于光通信、光盘、光印刷等领域。 (2) Electronics production 用于制造高速器件、高速开关器件和量子霍耳效应等。现已研制成高电子迁移率晶体管等。

  11. 1.1.4 Study Range of QM • Macro-physics: > 100 m; • Miscro-physics: < 1 m; • Range of QM < 100 nm. Technologies and Methods: Chemical: 溶胶、凝胶法,电化学刻蚀法等。 Physical: 光刻,离子束、电子束刻蚀,激光加工,分子束外延生长等。

  12. K A 1 2 T R - + I K-感光金属阴极;A-金属网阳极;T- 换向开关,1正,2负; I´H IH G V U0 O U 1. 2 Photoelectric Effect 光电子:光照射金属表面后从金属表面逸出的电子。 光电子与入射光的频率有关,当 threshold, 产生光电子。而且数量与光强成正比。IH=N•e。 当< threshold, 无光电子,且与照射强度和时间无关。 光的电磁理论,光的能量由光的强度决定,与光的频率无关。因而无法解释光电效应。 Einstein viewpoint: wave and particles

  13. a 光电子能随照射光频率的增加而增加。 E 应用不同频率的单色光进行实验,能量与频率之间为关系关系,如图所示。 E(a+b) Factor b is the slope of the straight line. Found to be b=h/2 (1) ω E=(- a)h/2 =ħ (- a)=h(-a) (2) h=6.610-34 Ws2 Einstein认为该效应为能量为ħ的不连续的光量子产生的。 Photos’ energy h 逸出功W+电子的动能 If h < W0, no e turn out

  14. 1.3 Blackbody Radiation Absorption and reflection Absolute blackbody: Thermal radiation: due to molecule’ thermal motion, a body radiates electromagnetic outward, density of radiation depends on body’s temperature.

  15. Stenfan-Boltzmann’s law and and Wien’s displacement (W/cm2) (W/cm2) Stenfan- Boltzmann’s law (斯忒藩-玻耳兹曼): The density of radiation Wien’s displacement (维恩位移定律) Temperature increases, the maximum of wavelength shifts to short wavelength direction.

  16. Rayleigh-Jeans (瑞利-金斯) Radiation Law According to statistical thermodynamics Radiation flux: Agree with well in long wavelength direction, but can’t explain in short wavelength direction.

  17. 普朗克线 瑞利-金斯线 Experiment data 能量密度 维恩线 0 1 2 3 4 5 6 7 8 9 10 11 Wavelength(cm ×104) 黑体辐射能量分布曲线

  18. Plank’s radiation law Excited state Photon E=hv Photon E=hv Ground state Light quanta: introduced first by Planck in 1900. A body emits or absorbs energy by means of light quanta (photons). Photons are emitted or absorbed by the transition of an atom from one energy state to another.

  19. According to the conception of photon, Planck gave the expression of radiation energy and flux: v is frequency of photon,  = 2v, c is light velocity, c1, c2 is constant, T is temperature.

  20. 普朗克线 瑞利-金斯线 能量密度 维恩线 0 1 2 3 4 5 6 7 8 9 10 11 Wavelength(cm ×104) 黑体辐射能量分布曲线

  21. Example: According to Planck’s radiation law, calculate the proportion of energy emitted by a black body radiation at T=2000 K in two bands of width 100Å, one centred at 5000 Å (visible light) and the other at 50000Å (infrared). Solution: we define λ1= 5000 Å,λ2= 50000 Å, λ=50 Å,

  22. Because hc=12400 eV, k=8.6210-5 eV, we can obtain W=5.5

  23. 1.5 Bohr model of atom structure - + - + + - - - + + + - + - + - - + - + 2 3 1  +Ze 1. The models of atom structure Thomson (1903) model: positive charges and electrons equably distribute in the atom. Rutherfold model: the planet of atom nucleus

  24. 2. Spectrum of hydrogen atom

  25. 3. Bohr model of atom structure (1)Atoms exist in a series of discontinuously stable states, stationary states. (2)Angular momentum L (3)Photons are emitted or absorbed by the transition of an atom from one energy state to another, which corresponds to electron leaps from one orbit to another. This model can successfully explain spectrum of hydrogen atom!

  26. El ћlm Em ћln ћmn En 1.6 Ritz Combination Principle(1908) 在研究原子的辐射中,发现每种原子具有属于自己的特征谱线。谱线为原子内两个分立能级之间跃迁的结果。 (48) 对于频率为: (49) 通过对已知谱线的相加或相减,可得到新的谱线。

  27. J V 4.9 9.8 14.7 A K Franck-Hertz实验得到的电流-电压特性 阳极Z 1.7 The Franck-Hertz Experiment(1913) 能量量子化的又一个实验证明。 在一个三级管中充满水银蒸汽, 三级管由阴极K, 圆柱形网格A和阳极Z构成. 电子在K和A之间加速后到达Z.一个很小的反向电压阻挡速度慢的电子到达Z.当E<4.9eV, 由于弹性碰撞电子和水银原子之间的能量交换可以忽略,此时电流稳定增加. 当E=4.9eV, 电流急剧下降,显然在碰撞中水银原子带走了能量,是电子不能到达Z极. 该能量的原子射出的特征波长为=2573Å.

  28. 1.8 The Stern-Gerlach Experiment(1921) Without field Intensity With field 0 Scale In an inhomogeneous field H, atomic beams split. Magnetic moment can’t orient arbitrarily , only two opposing orientation. Quantization of the angular momentum. (角动量量子化)

  29. 1.9 De Broglie wave Problem: photons possess wave-particle duality, and other corpuscle? In 1924, De Broglie proposed that all corpuscles possess wave-particle duality. De Broglie relation

  30. U crystal I U G Davission and Germer experiment (1927) The Diffraction of electron

  31. d C A B C    A B d

  32. The foundation of quantum mechanics X ray electron r Probe light nucleus How to decide the exact position of a rabbit? By Bohr model, electron’s orbit radius is r, but how to detect it?

  33. The wave length of probe light  << r(?) By Compton scattering, photon and electron interact, momentum shift: Probe light will perturb the moving of electron, If position measurement is more exact, wave length of probe light is more short, so the perturbation to corpuscle (electron) is more strong. Infinite exactly tracing the corpuscle is impossible!

  34. In 1923~1927, Heisenberg founded matrix mechanics (矩阵力学) SchrÖdinger founded wave mechanics(波动力学) Two theories are equivalent, and form quantum mechanics. The uncertainty principle (测不准原理)

  35. 1927年在布鲁塞尔召开的第五届索尔维会议

  36. Biographical notes • 爱因斯坦(Albert Einstein,1879~1955),美籍德国犹太人,是20世纪最伟大的科学家,被公认为人类历史上最具有创造性才智的人物之一。他的名字与相对论密不可分,他创立的狭义和广义相对论使现代关于时间和时间性质的想法发生突破性进展并给原子能的利用提供了理论基础。 因其对光电效应的解释获1921年诺贝尔奖。 • 薛定谔(Erwin Schrodinger,1887-1961)奥地利理论物理学家,与爱因斯坦、玻尔、玻恩、海森伯等一起于20世纪20年代后期,发展了量子力学。因建立描述电子和其他亚原子粒子的运动的波动方程,获得1933年诺贝尔物理奖。 • 海森伯(Werner Karl Heisenberg 1907~1976)德国理论物理学家,量子力学第一种有效形式(矩阵力学)的创建者。 • 玻恩(Max Born 1882~1970)德国理论物理学家,量子力学的奠基人之一 • 普朗克(Max Planck 1858~1947)近代伟大的德国物理学家,量子论的奠基人。 • 玻尔(Bohr Niels 1885~1962)丹麦物理学家。因对原子结构和放射的研究获1922年诺贝尔奖。他的儿子 欧文·尼尔斯·玻尔(生于1922年)也是一个物理学家,因发现原子核的非对称性而获1975年的诺贝尔奖.

  37. Schrodinger’s Cat 一只猫关在一个钢盒内,盒中有下述极残忍的装置(必须保证此装置不受猫的直接干扰):在盖革计数器中有一小块辐射物质,它非常小,或许在1 小时内只有一个原子衰变。在相同的几率下或许没有一个原子衰变。如果发生衰变,计数管便放电,并通过继电器释放一锤,击碎 一个小的氢氰酸瓶。如果人们使这整个系统自己存在1 个小时, 那么人们会说,如果在期间没有原子衰变,这猫就是活的。而第一次原子衰变必定会毒杀了猫。

  38. quantum entangle state (量子纠缠态) Quantum computer and quantum communication Local expanded state

More Related