1 / 32

相似三角形

相似三角形. 例 1 如图, △ ABC 中, FM ∥ AB , EH ∥ BC , DG ∥ AC , AD:DE:EB=3:2:1, 求 的值。. C. H. G. P. M. F. A. B. D. E. 活动一. 分析:. 易证, △ HMP ∽△PDE∽△GPF ,得. A. N. P. B. C. M. D. 一 . 填空选择题 :

geoff
Download Presentation

相似三角形

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 相似三角形

  2. 例1 如图,△ABC中,FM ∥ AB,EH ∥ BC,DG∥AC,AD:DE:EB=3:2:1,求 的值。 C H G P M F A B D E 活动一 分析: 易证,△HMP∽△PDE∽△GPF,得

  3. A N P B C M D

  4. 一.填空选择题: 1、(1) △ ABC中,D、E分别是AB、AC上的点,且∠AED= ∠ B,那么△ AED ∽ △ ABC,从而 (2) △ ABC中,AB的中点为E,AC的中点为D,连结ED, 则△ AED与△ ABC的相似比为______. 2、如图,DE∥BC, AD:DB=2:3, 则△ AED和△ ABC 的相似比为___. 3、 已知三角形甲各边的比为3:4:6, 和它相似的三角形乙的最大边为10cm,则三角形乙的最短边为______cm. 4、等腰三角形ABC的腰长为18cm,底边长为6cm,在腰AC上取点D, 使△ABC∽ △BDC, 则DC=______. AC 1:2 2:5 5 2cm

  5. 5.如图,△ADE∽ △ACB, 则DE:BC=_____ 。 6.如图,D是△ABC一边BC 上一点,连接AD,使 △ABC ∽ △DBA的条件是( ). A. AC:BC=AD:BD B. AC:BC=AB:AD C. AB2=CD·BC D. AB2=BD·BC 7. D、E分别为△ABC 的AB、AC上 的点,且DE∥BC,∠DCB= ∠ A, 把每两个相似的三角形称为一组,那 么图中共有相似三角形_______组。 1:3 D 4

  6. 二、证明题: 1. D为△ABC中AB边上一点, ∠ACD= ∠ ABC. 求证:AC2=AD·AB. 2. △ABC中,∠ BAC是直角,过斜 边中点M而垂直于斜边BC的直线 交CA的延长线于E,交AB于D, 连AM. 求证:① △ MAD ~△ MEA ② AM2=MD · ME 3.如图,AB∥CD,AO=OB, DF=FB,DF交AC于E, 求证:ED2=EO · EC. A D B C M E

  7. 4.过◇ABCD的一个顶点A作一直 线分别交对角线BD、边BC、边 DC的延长线于E、F、G . 求证:EA2 = EF· EG . 5. △ABC为锐角三角形,BD、CE 为高 . 求证: △ ADE∽ △ ABC (用两种方法证明). 6.已知在△ABC中,∠BAC=90°, AD⊥BC,E是AC的中点,ED交 AB的延长线于F. 求证: AB:AC=DF:AF.

  8. 1.(1) △ ABC中,D、E分别是AB、AC上的点, 且∠AED= ∠ B,那么△ AED ∽ △ ABC, 从而 解:∵∠AED=∠B, ∠A=∠A ∴△AED∽ △ABC(两角对 应相等,两三角形相似) ∴

  9. (2) △ ABC中,AB的中点为D,AC的中点为E,连结DE, 则△ ADE与△ ABC的相似比为______ 解 :∵D、E分别为AB、AC的中点 ∴DE∥BC,且 ∴ △ADE∽△ABC 即△ADE与△ABC的相似比为1:2

  10. 2. 如图,DE∥BC, AD:DB=2:3, 则△ AED 和△ ABC 的相似比为___. 解: ∵DE∥BC ∴△ADE∽△ABC ∵AD:DB=2:3 ∴DB:AD=3:2 ∴(DB+AD):AD=(2+3):3 即 AB:AD=5:2 ∴AD:AB=2:5 即△ADE与△ABC的相似比为2:5

  11. 3.已知三角形甲各边的比为3:4:6, 和它相似的三角形乙 的最大边为10cm, 则三角形乙的最短边为______cm. 解:设三角形甲为△ABC ,三角 形乙为 △DEF,且△DEF的最大 边为DE,最短边为EF ∵ △DEF∽△ABC ∴ DE:EF=6:3 即 10:EF=6:3 ∴ EF=5cm

  12. 4. 等腰三角形ABC的腰长为18cm,底边长为6cm,在 腰AC上取点D, 使△ABC∽ △BDC, 则DC=______. 解: ∵ △ABC ∽△BDC ∴ 即 ∴ DC=2cm

  13. 5. 如图,△ADE∽ △ACB, 则DE:BC=_____ 。 解: ∵ △ADE∽△ACB 且 ∴

  14. 7. D、E分别为△ABC 的AB、AC上的点,DE∥BC, ∠DCB= ∠ A,把每两个相似的三角形称为一组, 那么图中共有相似三角形_______组。 解: ∵ DE∥BC ∴∠ADE= ∠B, ∠EDC=∠DCB=∠A ① ∵ DE∥BC ∴△ADE ∽ △ABC ② ∵ ∠A= ∠DCB, ∠ADE= ∠B ∴△ADE∽ △CBD ③ ∵ △ADE ∽ △ABC △ADE ∽ △CBD ∴ △ABC ∽ △CBD ④ ∵ ∠DCA= ∠DCE, ∠A= ∠EDC ∴ △ADC ∽ △DEC

  15. 1. D为△ABC中AB边上一点,∠ACD= ∠ ABC. 求证:AC2=AD·AB 分析:要证明AC2=AD·AB,需 要先将乘积式改写为比例 式 ,再证明AC、 AD、AB所在的两个三角形相 似。由已知两个三角形有二个 角对应相等,所以两三角形相 似,本题可证。 证明:∵ ∠ACD= ∠ ABC ∠A = ∠ A ∴ △ABC △ACD ∴ ∴ AC2=AD·AB

  16. 2. △ABC中,∠ BAC是直角,过斜边中点M而垂直于 斜边BC的直线交CA的延长线于E, 交AB于D,连AM. 求证:① △ MAD ~△ MEA ② AM2=MD · ME 分析:已知中与线段有关的条件仅有AM=BC/2=BM=MC,所以首先考虑用两个角对应相等去判定两个三角形相似。AM是△ MAD 与△ MEA 的公共边,故是对应边MD、ME的比例中项。 ∴∠B=∠E ∴∠MAD= ∠E 又 ∵ ∠DMA= ∠AME ∴△MAD∽ △MEA 证明:①∵∠BAC=90° M为斜边BC中点 ∴AM=BM=BC/2 ∴ ∠B= ∠MAD 又 ∵ ∠B+ ∠BDM=90° ∠E+ ∠ADE= 90° ∠BDM= ∠ADE ② ∵ △MAD∽ △MEA ∴ 即AM2=MD·ME

  17. 3.过◇ABCD的一个顶点A作一直线分别交对角线BD、边 BC、边DC的延长线于E、F、G . 求证:EA2 = EF· EG . 分析:要证明 EA2 = EF· EG , 即 证明 成 立,而EA、EG、EF三条线段在同一直线上,无法构成两个三角形,此时应采用换线段、换比例的方法。可证明:△AED∽△FEB, △AEB ∽ △GED. 证明:∵ AD∥BF AB∥BC ∴△AED ∽△FEB △AEB ∽△GED ∴ ∴

  18. 4.△ABC为锐角三角形,BD、CE为高 . 求证:△ ADE∽ △ ABC(用两种方法证明). 证明二:∵ ∠BEO= ∠CDO ∠ BOE=∠COD ∴ △BOE ∽ △COD ∴ 即 又∵ ∠BOC= ∠EOD ∴ △BOC ∽△EOD ∴ ∠1= ∠2 ∵ ∠1+ ∠BCD=90°, ∠2+ ∠3= ∠ 90° ∴ ∠ BCD= ∠3 又∵ ∠A= ∠A ∴ △ ADE∽ △ ABC 证明一: ∵BD⊥AC,CE⊥AB ∴∠ABD+∠A=90°, ∠ACE+∠A= 90° ∴ ∠ABD= ∠ACE 又∵ ∠A= ∠A ∴△ ABD ∽ △ ACE ∴ ∵ ∠A= ∠A ∴ △ ADE ∽ △ ABC

  19. 6.已知在△ABC中,∠BAC=90°,AD⊥BC,E是AC的 中点,ED交AB的延长线于F. 求证: AB:AC=DF:AF. 分析:因△ABC∽△ABD,所以 , 要证 即证 , 需证△BDF∽△DAF. ∴ ∠BDF= ∠C= ∠BAD 又∵ ∠F =∠F ∴ △BDF∽△DAF. ∴ ∵ ∠BAC=90°, AD⊥BC ∴ △ABC∽△ABD ∴ ∴ 证明:∵ ∠BAC=90° AD⊥BC ∴ ∠ABC+∠C= 90° ∠ABC+∠BAD= 90° ∴ ∠BAD= ∠C ∵ ∠ADC= 90° E是AC的中点, ∴ED=EC ∴ ∠EDC= ∠C ∵ ∠EDC = ∠BDF

  20. A P 1 4 2 B C 二、探索题 1、条件探索型 1.已知:如图,△ABC中,P是AB边上的一点,连结CP.满足什么条件时△ ACP∽△ABC. 解:⑴∵∠A= ∠A,∴当∠1= ∠ACB (或∠2= ∠B)时,△ ACP∽△ABC ⑵ ∵∠A= ∠A,∴当AC:AP=AB:AC时, △ ACP∽△ABC ⑶ ∵∠A= ∠A, 当∠4+∠ACB=180°时, △ ACP∽△ABC 答:当∠1= ∠ACB 或∠2= ∠B 或AC:AP=AB:AC或∠4+∠ACB=180°时,△ ACP∽△ABC.

  21. a C 解:⑴∵ ∠1=∠D=90° ∴当 时,即当 时, △ABC∽ △CDB,∴ A D b B ⑵∵ ∠1=∠D=90° ∴当 时,即当 时, △ABC∽ △BDC, ∴ 答:略. 2.如图:已知∠ABC=∠CDB=90°,AC=a,BC=b,当BD与a、b之间满足怎样的关系式时,两三角形相似 1

  22. A E 1 2 B D G F 活动2、结论探索型 1.将两块完全相同的等腰直角三角板摆成如图的样子,假设图形中的所有点、线都在同一平面内,则图中有相似(不包括全等)三角形吗?如有,把它们一 一写出来. 解:有相似三角形,它们是:△ADE∽ △BAE, △BAE ∽ △CDA ,△ADE∽ △CDA( △ADE∽ △BAE ∽ △CDA) C

  23. A A A A D D D D B B B B C C C C 2.△在ABC中,AB>AC,过AB上一点D作直线DE交另一边于E,使所得三角形与原三角形相似,画出满足条件的图形. E E E E   这类题型的特征是有条件而无结论,要确定这些条件下可能出现的结论.解题思路是:从所给条件出发,通过分析、比较、猜想、寻求多种解法和结论,再进行证明.

  24. A F D E C B 活动3、存在探索型 1、 如图, DE是△ABC的中位线,在射线AF上是否存在点M,使△MEC与△ADE相似,若存在,请先确定点 M,再证明这两个三角形相似,若不存在,请说明理由.

  25. A F D E C B 解:存在.过点E作AC的垂线,与AF交于一点,即M点(或作∠MCA= ∠AED). M 证明:连结MC,           ∵DE是△ABC的中位线,     ∴DE∥BC,AE=EC,      又∵ME⊥AC,           ∴AM=CM,           ∴ ∠1= ∠2 ,           ∵∠B=90°,           ∴ ∠4= ∠B= 90°,         ∵AF ∥BC,AM ∥DE,       ∴ ∠1= ∠2 ,           ∴ ∠3= ∠2 ,           ∵ ∠ADE= ∠MEC=90 ° ,   ∴ △ADE ∽△MEC. 1 4 3 2

  26. 例2、如图,已知:AB⊥DB于点B ,CD⊥DB于点D,AB=6,CD=4,BD=14. 问:在DB上是否存在P点,使以C、D、P为顶点的三角形与以P、B、A为顶点的三角形相似?如果存在,计算出点P的位置;如果不存在,请说明理由。 A C 6 4 B D 14

  27. A 6 C 4 B D 14―x p x P (2)假设存在这样的点P,使△ABP∽△PDC,则 则有AB:PD=PB:CD 设PD=x,则PB=14―x, ∴6: x =(14―x): 4 ∴x=2或x=12 ∴x=2或x=12或x=5.6时,以C、D、P为顶点的三角形与以P、B、A为顶点的三角形相似

  28. 如图,在矩形ABCD中,AB=6米,BC=8米,动点P以2米/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1米/秒的速度从点C出发,沿CB向点B移动,设P、Q两点移动t秒(0<t<5)后, 四边形ABQP的面积为S平方米。 ①分别求出面积S与时间t的关系式 D A P 6 C B H 8 Q

  29. D A P B C H ②探究:在P、Q两点移动的过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时点P的位置;若不能,请说明理由。 Q

  30. 练习: ∽ E A D F B C

  31. 活动4、位似 两个多边形不仅相似,而且对应顶点的连线相交于一点,这样的相似叫做位似,点O叫做位似中心. 利用位似的方法,可以把一个多边形放大或缩小

More Related