This presentation is the property of its rightful owner.
Sponsored Links
1 / 61

直线相关与直线回归 PowerPoint PPT Presentation


  • 92 Views
  • Uploaded on
  • Presentation posted in: General

第十三章. 直线相关与直线回归. 119.6. 121.9. 125.1. 117.0. 115.4. 124.7. 120.1. 123.0. 122.8. 117.3. 120.6. 121.5. 125.0. 125.9. 123.2. 126.6. 122.0. 127.6. 125.1. 120.1. 119.5. 126.1. 126.4. 125.6. 118.9. 130.4. 124.9. 125.8. 126.1. 1. 20.9. 116.1. 124.0. 124.6. 118.7.

Download Presentation

直线相关与直线回归

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


4870876


4870876

119.6

121.9

125.1

117.0

115.4

124.7

120.1

123.0

122.8

117.3

120.6

121.5

125.0

125.9

123.2

126.6

122.0

127.6

125.1

120.1

119.5

126.1

126.4

125.6

118.9

130.4

124.9

125.8

126.1

1

20.9

116.1

124.0

124.6

118.7

119.1

121.9

118.0

117.0

114.6

123.9

116.0

125.3

123.6

123.6

126.4

115.5

119.2

114.0

123.4

126.6

117.3

113.6

127.6

120.5

113.6

130.2

128.3

118.2

124.7

122.4

118.8

123.1

122.7

126.6

127.8

125.9

110.5

124.8

115.2

119.4

128.0

116.7

132.4

129.3

121.7

115.0

120.4

122.1

127.0

135.3

125.7

111.2

124.3

124.2

124.7

121.7

121.3

124.1

119.9

121.7

113.8

116.7

129.9

128.5

126.5

122.8

120.1

118.2

122.5

127.7

124.9

123.3

120.3

125.7

1995104cm


4870876

1 AIU/g

E

1

2

3

1

3550

2450

2

2000

2400

3

3000

1

800

4

3950

3200

5

3800

3250

6

3750

2700

7

3450

2500

8

3050

1750

26550

20050


2 sah il 6 pg ml

2 SAHIL-6(pg/ml)


Sah il 6

SAHIL-6


Linear correlation

(linear correlation)

:

x,y


4870876

-1< r <0

0< r <1

r = 0

r = 0

r =1

r = 0

r = 0

r = -1


4870876

r


4870876


4870876

13.1(P212) -6IL-6IL-6(pg/ml)IL-6 (pg/ml)10SAH24IL-6IL-62SAHIL-6IL-6


4870876

2

lxx=6104.664

lyy=16242.101

lxy=7201.698

r=0.7232

1


4870876

1tr

=n-2


13 1 sah il 6 il 6

13.1 SAHIL-6IL-6

H0 =0 SAHIL-6IL-6

H1 0SAHIL-6IL-6

=0.05


4870876

r=0.7232, n=10,

t==2.962

=10-2=8t0.01< P < 0.02=0.05H0H1SAHIL-6IL-6


4870876

2

r=n-213-1(P222) r


4870876

1.

2.

3.


4870876

Linear Regression


4870876

1

mg/24h2

kg3

1

mg/24h2

kg3

1

7

2.5

17

17

3.2

2

9

2.5

18

25

3.2

3

9

2.5

19

27

3.4

4

12

2.7

20

15

3.4

5

14

2.7

21

15

3.4

6

16

2.7

22

15

3.5

7

16

2.4

23

16

3.5

8

14

3.0

24

19

3.4

9

16

3.0

25

18

3.5

10

16

3.1

26

17

3.6

11

17

3.0

27

18

3.7

12

19

3.1

28

20

3.8

13

21

3.0

29

22

4.0

14

24

2.8

30

25

3.9

15

15

3.2

31

24

4.3

16

16

3.2

2


4870876

(

kg

)

(

L

)

1

42

2.55

2

42

2.2

3

46

2.75

4

46

2.4

5

46

2.8

6

50

2.81

7

50

3.41

8

50

3.1

9

52

3.46

10

52

2.85

11

58

3.5

12

58

3

3 12


4870876

Pearson K18571936)19031078YX

= 33.73+0.516 X


4870876

Galton F18221911


4870876

.


4870876


4870876


Sah il 61

SAHIL-6


4870876


4870876

b:

b0:


4870876

y

x


4870876


13 2 13 1

2 SAHIL-6(pg/ml)

13.2 13.1


4870876

2bb0

1


X y l xx l yy l xy

xylxxlyylxy

x=59.26

y=142.87

lxx=6104.664

lyy=16242.101

lxy=7201.698


4870876


4870876

12

3 12

(

kg

)

(

L

)

1

42

2.55

2

42

2.2

3

46

2.75

4

46

2.4

5

46

2.8

6

50

2.81

7

50

3.41

8

50

3.1

9

52

3.46

10

52

2.85

11

58

3.5

12

58

3


4870876

2bb0

1


X y l xx l yy l xy1

xylxxlyylxy

x=49.33

y=2.9025

lxx=306.6667

lyy=1.8892

lxy=18.04


4870876


4870876

XX


4870876

1

bt/2,sb


4870876

t

2


4870876

()FF1


4870876

Q

Y

X

Y


4870876

Y

SS = SS + SS


4870876

SS = SS + SS

= n 1 = 1 = n - 2

SS =lYY

SS =blXY =lXY2/lXX

SS= SS-SS= lYY -lXY2/lXY


13 3 13 2

13.313.2

  • H0=0

    H10

    =0.05

  • FP


4870876

t

= n - 2

Sy.xXY


4870876

xY


4870876

1

2

3

4


4870876

1

2

3

4

5

6

7


4870876

1.

2. rb

3.


1 r b 2 r b 3 r 2

1. rb

2. rb

3.

r2


4870876

SPSS

analyzecorrelate

bivariate correlations

variables: x ok

y


4870876

SPSS

P


4870876

SPSS

analyzeregression

linear regression

dependent: y ok

Independent: x


4870876

SPSS

P


4870876

SPSS


4870876

P514 1.1


  • Login