1 / 47

Projet d'extension du Laboratoire souterrain de Modane

Projet d'extension du Laboratoire souterrain de Modane. F. Piquemal Laboratoire Souterrain de Modane (CNRS/IN2P3 ). Conseil scientifique IN2P3, 5 mai 2011. Deep Underground Laboratories. Soudan. Boulby. SNOLab. YangYang. DUSEL Homestake. Modane. Canfranc. Gran Sasso. WIPP. Kamioka.

gari
Download Presentation

Projet d'extension du Laboratoire souterrain de Modane

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Projet d'extension du Laboratoire souterrain de Modane F. Piquemal Laboratoire Souterrain de Modane (CNRS/IN2P3) Conseil scientifique IN2P3, 5 mai 2011

  2. Deep Underground Laboratories Soudan Boulby SNOLab YangYang DUSEL Homestake Modane Canfranc Gran Sasso WIPP Kamioka INO

  3. Underground Physics Physics beyond the standard Model, search for rare events or decays • Proton decay GeV Origin of the creation of deep underground labs • SUSY • Neutrino oscillations and astronomy Mev - GeV • Solar neutrinos • Atmospheric • Accelerators • SuperNovae • Neutrino properties MeV • Double beta decay Nature and mass of neutrino • Dark matter keV • Universe content

  4. Modane Boulby (UK) IUS Modane Gran Sasso (Italy) Canfranc (Spain) DEEP Underground Labs in Europe Coordination efforts in the context of ILIAS And ASPERA networks Modane (France)

  5. Laboratoire Souterrain de Modane CNRS and CEA http://www.lsm.in2p3.fr

  6. Laboratoire Souterrain de Modane 4700 m.w.e COMMISSARIAT À L’ÉNERGIE ATOMIQUE DIRECTION DES SCIENCES DE LA MATIÈRE Built for aup experiment (proton decay) in 1981-1982

  7. Laboratoire Souterrain de Modane From a particle physics experiment to a multi-science plateform 1990- 2000 1979 - 1981 1982- 1990 2000 - …. Prototypes Experiments pExperiment Construction Neutrino: double beta decay, double EC Dark matter Nuclear structure Logical test failures in microélectronics Proton decay Ultra low radioactivity measurement:Environmental sciences, applications

  8. Laboratoire Souterrain de Modane Depth: 4800 m.w.e. Surface::400 m2 Volume : 3500 m3 Muon flux: 4 10-5 µ.m-2.s-1 Neutrons: Fast flux: 4 10-2 n.m-2.s-1 Thermal flux: 1.6 10-2 n.m-2.s-1 Radon: 15 Bq/m3 Access : horizontal Budget (full cost): 1 M€/yr Staff: 3 Physicists 3 Engineers 7 Technicians ~100 users International associated laboratory agreement with JINR Dubna (Russia) and CTU Prague (Czech Republic)

  9. LSM: external facility Offices, workshop, outreach space and guest rooms Permanent exhibition for general public 2 000 visitors/year

  10. Neutrino physics: NEMO -3 Double beta decay : Tracking + calorimeter - 100Mo 7 kg

  11. preliminary x 2 Dark matter: EDELWEISS Bolometric technique: Heat + Ionization Ge crystals - 40 kg

  12. Other experiments Neutrino physics Double EC search (106Cd) TGV-II (Ge with sheets of Double EC candidates) Nuclear physics Super Heavy Element In nature SHIN (osmium ore surrounded by 3He neutron detectors) TGV II SHIN BiPo (related to SuperNEMO, measurement of thin film at the level of 1 µBq/kg) In preparation MIMACprototype (Dark matter TPC for DM directional detection MEMPHYNO prototype for megaton – scale cherenkov detector

  13. Scientific activities @ LSM Neutron detectors at LSM Sphere TPC 3He counters Gd loaded liquid scintillator Support from ILIAS TARI for the 3 detectors Radon detectors – sensitivity ~1 mBq/kg (electrostatic collection of radon daughters) Saga University (Japan) and Dubna (Russia))

  14. Laboratoire Souterrain de Modane 13 HPGe from 6 different laboratories of CNRS and CEA are available at LSM • - Material selection for astroparticle physics, • Environnemental research (oceanography, climat, retro-observation,….) - Environmental survey - Applications (wine datation, salt origin,…) - Developements of Ge detector (ILIAS)

  15. Perspectives In Europe, even remote mountain landscapes are man-made Noisetier Epicéa Pollen data, Villy, Haute Savoie, 2250m asl Pin cembro Sapin Open space: deforestation Epicéa 3600 cal. BP First forest opening (human or climate?) Pin cembro Epicéa Sapin 5600 cal. BP Pin cembro Sapin Closing of the forest space 8000 cal. BP Pin cembro 8900 cal. BP Forest reconquest Noisetier

  16. La nano/micro-électronique au LSM Les neutrons et les rayonnements alpha de la radioactivité naturelle sont la source d’erreurs dans les circuits de microélectronique L’utilisation de matériaux « radioactifs » peut entrainer des incidents industriels majeurs Le LSM est laboratoire de référence pour la norme internationale JEDEC en microélectronique

  17. Monte-Carlo Simulation of Underground Experiments • Up to 20,000 h of cave characterization • -SER reevaluated to2079 FIT/MBit • Monte-Carlo simulation gives a contamination level by 238U impurities of 0.37 ppb • Very good agreement with wafer-level characterization (alpha emissivity) in the range [0.2-0.5] ppb

  18. In 2006, the project of a safety galery along the Fréjus roadway tunnel started to be realistic. An unique opportunity Deepest site in Europe (4800 mwe) Known and « good » site (low convergence, dry, stiff rock) Central location in Europe, easy access (plane, train car) 23 years experience in running such platform Independent, convenient, safe, horizontal access European Roadmap new projects Integration of project to tunnel company planning and constraints Performed pre study : moderate cost ULISSE Project ULISSE project Scientific Motivation : To be able to host the next generation of neutrino and dark matter experiments To develop the multi-disciplinarity of the laboratory

  19. LSM Extension project New laboratory Present LSM Safety gallery Fréjus roadway tunnel

  20. LSM Extension project LSM extension

  21. Comparison of Underground Labs

  22. ULISSE Project International call for letter of interest June 2008 12 LoI received and one Expression of Interest Neutrino (DBD) SuperNEMO (tracko-calo method) COBRA (solid TPC) Dark matter: EURECA (Bolometers) DARWIN (noble liquid) EoI MIMAC (TPC) ULTIMA (Superfluid 3He) Double EC TGVIII Double EC (pixellized detector) Double EC with Ge detectors R&D for proton decay and neutrino physics MEMPHYNO Supernovae neutrinos: TPC sphere Logical test failure Low background techniqques :Environmantal measurement Sediment in alpin lakes 2 workshops to present projects Reviewed by an International Scientific Advisory Committee

  23. SuperNEMO @LSM Tracko-calo detector 100 kg of isotopes (20 modules) Degenerated Inverted hierarchy Normal hierarchy

  24. 100m 55m 22,5m 14,9m SuperNEMO @LSM 20 modules shielded by water tanks Space requirements: 32 m X 15 m Minimum height: 13 m

  25. EURECA infrastructure EURECA @LSM Dark matter search with 1 ton of bolometers

  26. EURECA infrastructure EURECA @LSM Dimensions : 30 m x 14 m Height : 14 m

  27. EURECA infrastructure Low radioactivity plateform Ultra low plateform LSM, EDYTEM (Université de Savoie), LSCE (CNRS and CEA), LGGE (U. Grenoble,CNRS), LPSC (U. Grenoble, CNRS) Improvement of detectors for low radioactivity measurements Material selection Use of radioactivity for environmental research : Oceanography : Study of metals in the ocean, studies of water columns Retro-observation : Human effect on the environment, study of Alpin lakes Water quality : possibility to use sediments to know the state reference for the Lake and the river as requested by EU Studies of temperature water effect and fishing on the fish ressources Climatology Glaciology,.... Expertises : environmental survey Wine datation Salt origin,....

  28. Virtuous cycle • Modeling the impact of radiation on living cells: Geant4 DNA • Validation: need for relevant observables to characterize biological systems • Cell survival rate • DNA single or double strain breaks • Molecular biology: genomic mutations, gene expression • Experimental protocol: compare observables after controlled radiation exposure • In normal lab conditions • After beam irradiation (γ, e-, p, α) • Need for a reference point at zero-radiation: Modane Biologists, computer scientists Physicists, chemists Geant4 DNA

  29. The reference point: LSM • In normal lab conditions, cultures are exposed to 10 Millions cosmic rays per day per square meter • Low but significant radiation exposure • In Modane, down to 4 cosmic rays per day per square meter • Goal: study evolution of model organisms in radiation free environment • Bacteria life cycle • Mutation rate • Localization of gene mutations, gene expression • DNA breaks

  30. LSM Extension status LSM extension 1st EQUIPEX call ULISSE demand 19,5 M€ Including : Civil Work (12 M€) Equipments (3 M€) SuperNEMO 1st Module (1,5 M€) EURECA (1,5 M€) MIMAC (0,5 M€) Low radioactivity plateform (1 M€) ULISSE ranked at 61 position ex-aequo New strategy : To find the cavity funding outside of EQUIPEX call To submit equipments and detectors to 2nd call of EQUIPEX A constraint is to confirm the option for the civil work before September 2011 Funding in discussion for civil work 12 M€ Expected contribution from State, Rhône-Alpes, Savoie and CNRS (~1 M€)

  31. LSM Extension LSM extension - Safety galery work started in October 2010 - 600 m excavated, TBM installation in progress - Laboratory digging end 2012 - Option for laboratory to be confirmed before sept 2011 - Pre-study funded by LSM and UK in 2007 - Detailed Studies in 2011 (Rhône-Alpes, Savoie, CNRS) New LSM in operation mid-2014

  32. LSM Extension LSM extension There are several project of underground laboratories around the world The extension of LSM will be one of the depth laboratory and will be attractive by the quality of the site and the access. Complementray offer with the other EU labs It will allow to host some of the projects of the astroparticle roadmap in particular on double beta decay and dark matter searches. Developments of the multidisciplibnaire plateform Possibility to welcome new sciences : biology, geosciences,.... Laboratory built for at leats 40 years, very high scientific potential Open to international partners

  33. Enrichment of 150Nd for double beta decay

  34. Factor of merit 150Nd Activity = A A0 =  M02 x G0 (Z, Q) x < m>2 150Nd is the best for GO phase space

  35. Status on 150Nd enrichment Neodynium project started in 2006 with a strong involvement and support from S. Jullian, G. Wormser and S. Katsanevas by studying the possibility to use MEMPHYS AVLIS facility 2008 : Collaboration 150Nd created between SuperNEMO and SNO+ collaboration to study the possibilities to produce high quantities of 150Nd MEMPHYS facility dismantled in 2008 2010 : possibility to study and built a dedicated industrial facility for 150Nd is proposed by CEA

  36. Le projet SuperNEMO – Le besoin • Détecter la désintégration « double bêta sans émission de neutrino » pour déterminer la nature du neutrino • Isotopes retenus à ce jour : • 82Se : • approvisionnement possible à court terme • Moins favorable que 48Ca ou 150Nd (bruit, élément de matrice, …) • 150Nd ou 48Ca • Pas d’approvisionnement en grande quantité possible d’ici 2018 • Probabilité plus élevée, meilleur rapport signal/bruit • Besoin estimé en Nd enrichi : 100 kg de Nd à 60% en 150Nd

  37. Les technologies d’enrichissement du 150Nd • UCG • Russie : développement en discussion • Laser : • Russie : production au niveau du laboratoire • France : • Expérience MENPHIS : 200 kg of Uranium at 2003 • Savoir-faire – Livre de procédé SILVA uranium => Proposition de réaliser une installation pour la production de Néodyme enrichi

  38. Phase du projet

  39. 1 2 3 1 : Décision d’engagement de la phase de définition et de conception (R&D + APS) 2 : Décision d’investissement dans l’installation 3 : Mise en opération

  40. 48Ca enrichment by KAERI (member of SuperNEMO collaboration) Grant from South Korean governement • Production (Production System) - Productivity: 25kg/yr (5g/hr) Phase III (’15~’16) 3 Phase II (’13~’14) • Production Demonstration (Prototype System) - Productivity: 5kg/yr (1.0g/hr) - System Review 2 Phase I (’10~‘12) • Engineering Demonstration (Pilot System) - Fiber-based Lasers - Productivity: 1kg/yr (0.2g/hr) 1 Level of enrichment 25%, 50% possible 28

More Related