第四章  污水的好氧生物处理
Download
1 / 113

第四章 污水的好氧生物处理 —— 活性污泥法 - PowerPoint PPT Presentation


  • 132 Views
  • Uploaded on

第四章 污水的好氧生物处理 —— 活性污泥法. 第八节 活性污泥法的发展和演变. 第九节 活性污泥法的设计计算. 第十节 二次沉淀池. 第十一节 活性污泥法系统设计和 运行中的一些重要问题. 第八节 活性污泥法的发展和演变. 活性污泥法的多种运行方式. 有机物去除和氨氮硝化. 传统活性污泥法 渐 减 曝 气 分 步 曝 气 完全混合法 浅 层 曝 气 深 层 曝 气 高负荷曝气或变形曝气 克 劳 斯 法 延 时 曝 气 接触稳定法 氧 化 沟 纯 氧 曝 气 活性污泥生物滤池( ABF 工艺)

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' 第四章 污水的好氧生物处理 —— 活性污泥法' - garan


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

第四章 污水的好氧生物处理——活性污泥法

第八节 活性污泥法的发展和演变

第九节 活性污泥法的设计计算

第十节 二次沉淀池

第十一节 活性污泥法系统设计和

运行中的一些重要问题



活性污泥法的多种运行方式

有机物去除和氨氮硝化

  • 传统活性污泥法

  • 渐 减 曝 气

  • 分 步 曝 气

  • 完全混合法

  • 浅 层 曝 气

  • 深 层 曝 气

  • 高负荷曝气或变形曝气

  • 克 劳 斯 法

  • 延 时 曝 气

  • 接触稳定法

  • 氧 化 沟

  • 纯 氧 曝 气

  • 活性污泥生物滤池(ABF工艺)

  • 吸附-生物降解工艺(AB法)

  • 序批式活性污泥法(SBR法)


渐 减 曝 气

  • 在推流式的传统曝气池中,混合液的需氧量在长度方向是逐步下降的。

  • 实际情况是:前半段氧远远不够,后半段供氧量超过需要。

  • 渐减曝气的目的就是合理地布置扩散器,使布气沿程变化,而总的空气量不变,这样可以提高处理效率。



分布曝气示意图

分 步 曝 气

  • 把入流的一部分从池端引入到池的中部分点进水。


完 全 混 合 法

完全混合的概念

在分步曝气的基础上,进一步大大增加进水点,同时相应增加回流污泥并使其在曝气池中迅速混合,长条形池子中也能做到完全混合状态。


完 全 混 合 法

完全混合法的特征

(1)池液中各个部分的微生物种类和数量基本相同,生活环境也基本相同。

(2)入流出现冲击负荷时,池液的组成变化也较小,因为骤然增加的负荷可为全池混合液所分担,而不是像推流中仅仅由部分回流污泥来承担。完全混合池从某种意义上来讲,是一个大的缓冲器和均和池,在工业污水的处理中有一定优点。

(3)池液里各个部分的需氧量比较均匀。


浅 层 曝 气

1953年派斯维尔(Pasveer)的研究:氧在10℃静止水中的传递特征,如下图所示。

特点:气泡形成和破裂瞬间的氧传递速率是最大的。在水的浅层处用大量空气进行曝气,就可以获得较高的氧传递速率。


浅 层 曝 气

  • 扩散器的深度以在水面以下0.6~0.8m范围为宜,可以节省动力费用,动力效率可达1.8~2.6kg(O2) /kW·h。

  • 可以用一般的离心鼓风机。

  • 浅层曝气与一般曝气相比,空气量增大,但风压仅为一般曝气的1/4~1/6左右,约10kPa,故电耗略有下降。

  • 曝气池水深一般3~4m,深宽比1.0~1.3,气量比30~40m3/(m3 H2O.h)。

  • 浅层池适用于中小型规模的污水厂。

  • 由于布气系统进行维修上的困难,没有得到推广利用。


深 层 曝 气

深井曝气法处理流程

深井曝气池简图


深 层 曝 气

  • 一般曝气池直径约1~6m,水深约10~20m。深井曝气法深度为50~150m,节省了用地面积。

  • 在深井中可利用空气作为动力,促使液流循环。

  • 深井曝气法中,活性污泥经受压力变化较大,实践表明这时微生物的活性和代谢能力并无异常变化,但合成和能量分配有一定的变化。

  • 深井曝气池内,气液紊流大,液膜更新快,促使KLa值增大,同时气液接触时间延长,溶解氧的饱和度也由深度的增加而增加。

  • 当井壁腐蚀或受损时,污水可能会通过井壁渗透,污染地下水。


高负荷曝气或变形曝气

部分污水厂只需要部分处理,因此产生了高负荷曝气法。

曝气池中的MLSS约为300~500mg/L,曝气时间比较短,约为2~3h,处理效率仅约65%左右,有别于传统的活性污泥法,故常称变形曝气。


克 劳 斯 法

  • 克劳斯工程师把厌氧消化的上清液加到回流污泥中一起曝气,然后再进入曝气池,克服了高碳水化合物的污泥膨胀问题,这个方法称为克劳斯法。

  • 消化池上清液中富有氨氮,可以供应大量碳水化合物代谢所需的氮。

  • 消化池上清液夹带的消化污泥相对密度较大,有改善混合液沉淀性能的功效。


延 时 曝 气

  • 延时曝气的特点:

  • 曝气时间很长,达24h甚至更长,MLSS较高,达到3000~6000mg/L;

  • 活性污泥在时间和空间上部分处于内源呼吸状态,剩余污泥少而稳定,无需消化,可直接排放;

  • 适用于污水量很小的场合,近年来,国内小型污水处理系统多有使用。


接 触 稳 定 法

混合液曝气过程中第一阶段BOD5的下降是由于吸附作用造成的,对于溶解的有机物,吸附作用不大或没有,因此,把这种方法称为接触稳定法,也叫吸附再生法。混合液的曝气完成了吸附作用,回流污泥的曝气完成稳定作用。


接 触 稳 定 法

  • 直接用于原污水的处理比用于初沉池的出流处理效果好;可省去初沉池;此方法剩余污泥量增加。


氧 化 沟

  • 氧化沟是延时曝气法的一种特殊形式,它的池体狭长,池深较浅,在沟槽中设有表面曝气装置。

  • 曝气装置的转动,推动沟内液体迅速流动,具有曝气和搅拌两个作用,沟中混合液流速约为0.3~0.6m/s,使活性污泥呈悬浮状态。


纯 氧 曝 气

纯氧代替空气,可以提高生物处理的速度。纯氧曝气池的构造见右图。

在密闭的容器中,溶解氧的饱和度可提高,氧溶解的推动力也随着提高,氧传递速率增加了,因而处理效果好,污泥的沉淀性也好。纯氧曝气并没有改变活性污泥或微生物的性质,但使微生物充分发挥了作用。

纯氧曝气的缺点是纯氧发生器容易出现故障,装置复杂,运转管理较麻烦。


活性污泥生物滤池(ABF工艺)

上图为ABF的流程,在通常的活性污泥过程之前设置一个塔式滤池,它同曝气池可以是串联或并联的。


活性污泥生物滤池(ABF工艺)

  • 塔式滤池滤料表面附着很多的活性污泥,因此滤料的材质和构造不同于一般生物滤池。

  • 滤池也可以看作采用表面曝气特殊形式的曝气池,塔是一外置的强烈充氧器。因而ABF可以认为是一种复合式活性污泥法。



吸附-生物降解工艺(AB法)

  • A级以高负荷或超高负荷运行,B级以低负荷运行,A级曝气池停留时间短,30~60min,B级停留时间2~4h。

  • 该系统不设初沉池,A级曝气池是一个开放性的生物系统。A、B两级各自有独立的污泥回流系统,两级的污泥互不相混。

  • 处理效果稳定,具有抗冲击负荷和pH变化的能力。该工艺还可以根据经济实力进行分期建设。


序批式活性污泥法(SBR法)

SBR工艺的基本运行模式由进水、反应、沉淀、出水和闲置五个基本过程组成,从污水流入到闲置结束构成一个周期,在每个周期里上述过程都是在一个设有曝气或搅拌装置的反应器内依次进行的。


序批式活性污泥法(SBR法)

SBR工艺与连续流活性污泥工艺相比的优点

(1)工艺系统组成简单,不设二沉池,曝气池兼具二沉池的功能,无污泥回流设备;

(2)耐冲击负荷,在一般情况下(包括工业污水处理)无需设置调节池;

(3)反应推动力大,易于得到优于连续流系统的出水水质;

(4)运行操作灵活,通过适当调节各单元操作的状态可达到脱氮除磷的效果;

(5)污泥沉淀性能好,SVI值较低,能有效地防止丝状菌膨胀;

(6)该工艺的各操作阶段及各项运行指标可通过计算机加以控制,便于自控运行,易于维护管理。


序批式活性污泥法(SBR法)

SBR工艺的缺点

(1)容积利用率低;

(2)水头损失大;

(3)出水不连续;

(4)峰值需氧量高;

(5)设备利用率低;

(6)运行控制复杂;

(7)不适用于大水量。



活性污泥系统工艺设计

应把整个系统作为整体来考虑,包括曝气池、二沉池、曝气设备、回流设备等,甚至包括剩余污泥的处理处置。

主要设计内容:

(1) 工艺流程选择;

(2) 曝气池容积和构筑物尺寸的确定;

(3)二沉池澄清区、污泥区的工艺设计;

(4) 供氧系统设计;

(5)污泥回流设备设计。

主要依据:水质水量资料

生活污水或生活污水为主的城市污水:成熟设计经验

工业废水:试验研究设计参数


工艺流程的选择

流程选择是活性污泥设计中的首要问题,关系到日后运转的稳定可靠以及经济和环境效益,必须在详尽调查的基础上进行技术、经济比较,以得到先进合理的流程。

需要调查研究和收集的基础资料:

1. 污水的水量水质资料

水量关系到处理规模,多种方法分析计算,注意收集率和地下水渗入量;

水质决定选用的处理流程和处理程度。

2. 接纳污水的对象资料

3. 气象水文资料

4. 污水处理厂厂址资料

厂址地形资料;厂址地质资料。

5. 剩余污泥的出路调研


有机物负荷率法

劳伦斯(Lawronce)和麦卡蒂(McCarty)法

麦金尼(McKinney)法

曝气池的计算:纯经验方法


活性污泥负荷率NS(简称污泥负荷)

曝气区容积负荷率NV(简称容积负荷)

有机物负荷率的两种表示方法


经验水力停留时间:t

根据某种工艺的经验停留时间和经验去除率,确定曝气池的水力停留时间。

例如:流量200m3/h,曝气池进水BOD浓150mg/L, 出水要求为15mg/L,采用多点进水,求曝气池容积。

多点进水经验去除率:85%~90%

经验停留时间:3~5h

取停留时间为4.5h,则曝气池容积:

V=200×4.5m3=900m3


污泥负荷率

污泥负荷率是指单位质量活性污泥在单位时间内所能承受的BOD5量,即:

式中:Ns——污泥负荷率,kg BOD5/(kgMLVSS·d);

qv——与曝气时间相当的平均进水流量,m3/d;

ρs0——曝气池进水的平均BOD5值,mg/L;

ρs——曝气池中的污泥浓度,mg/L。


容积负荷率

容积负荷是指单位容积曝气区在单位时间内所能承受的BOD5量,即:

式中:Nv——容积负荷率,kg (BOD5)/(m3·d)。


根据上面任何一式可计算曝气池的体积,即:

ρs0和qv是已知的,ρx和N可参考教材中表14-5选择。对于某些工业污水,要通过试验来确定ρx和N值。污泥负荷率法应用方便,但需要一定的经验。


劳伦斯和麦卡蒂法

1.曝气池中基质去除速率和微生物浓度的关系方程

式中:dρs/dt——基质去除率,即单位时间内单位体积去除的基质量,mg(BOD5)/(L·h);

K——最大的单位微生物基质去除速率,即在单位时间内,单位微生物量去除的基质,mg(BOD5)/(mgVSS·h);

ρs——微生物周围的基质浓度,mg(BOD5)/L;

Ks——饱和常数,其值等于基质去除速率的1/2K时的基质浓度,mg/L;

ρx——微生物的浓度,mg/L。


ρ>Ks时,该方程可简化为

当ρ<Ks时,该方程可简化为

当曝气池出水要求高时,常处于ρ<Ks状态


劳伦斯和麦卡蒂法

2.微生物的增长和基质的去除关系式

式中:y——合成系数,mg(VSS)/mg(BOD5);

Kd——内源代谢系数,h-1 。


上式表明曝气池中的微生物的变化是由合成和内源代谢两方面综合形成的。不同的运行方式和不同的水质,y和Kd值是不同的。活性污泥法典型的系数值可参见下表:


上式表明曝气池中的微生物的变化是由合成和内源代谢两方面综合形成的。不同的运行方式和不同的水质,

这里的yobs实质是扣除了内源代谢后的净合成系数,称为表观合成系数。y为理论合成系数。


劳伦斯和麦卡蒂法 上式表明曝气池中的微生物的变化是由合成和内源代谢两方面综合形成的。不同的运行方式和不同的水质,

3.完全混合曝气池的计算模式

(1)曝气池体积的计算


q 上式表明曝气池中的微生物的变化是由合成和内源代谢两方面综合形成的。不同的运行方式和不同的水质,v——进水流量;

Qvw——排除的剩余活性污泥流量;

qvr——污泥回流量;

ρx ——曝气池中的微生物浓度;

ρxe——出流水中带走的微生物浓度;

ρxr——回流污泥中的微生物浓度;

ρs0——进水基质浓缩;

ρs——出流基质浓度;

V——曝气池体积。


微生物平均停留时间,又称污泥龄,是指反应系统内的微生物全部更新一次所用的时间,在工程上,就是指反应系统内微生物总量与每日排出的剩余微生物量的比值。以θC表示,单位为d。


对上图所示系统进行微生物量的物料平衡计算:


污水中的 对上图所示系统进行微生物量的物料平衡计算:ρx0很小,可以忽略不计,因而ρx0=0,在稳定状态下dρx/dt=0且

整理后即得


劳伦斯和麦卡蒂法 对上图所示系统进行微生物量的物料平衡计算:

3.完全混合曝气池的计算模式

(2)排出的剩余活性污泥量计算


根据 对上图所示系统进行微生物量的物料平衡计算:yobs以及上面的物料平衡式可推得:

则剩余活性污泥量Px(以挥发性悬浮固体表示的剩余活性污泥量)为:


劳伦斯和麦卡蒂法 对上图所示系统进行微生物量的物料平衡计算:

3.完全混合曝气池的计算模式

(3)确定所需的空气量


有机物在生化反应中有部分被氧化,有部分合成微生物,形成剩余活性污泥量。因而所需氧量为:

空气中氧的含量为23.2%,氧的密度为1.201kg/ m3 。将上面求得的氧量除以氧的密度和空气中氧的含量,即为所需的空气量。


劳伦斯和麦卡蒂法 有机物在生化反应中有部分被氧化,有部分合成微生物,形成剩余活性污泥量。因而所需氧量为:

4.推流式曝气池的计算模式

由于当前两种形式的曝气池实际效果差不多,因而完全混合的计算模式也可用于推流式曝气池的计算。


有机物在生化反应中有部分被氧化,有部分合成微生物,形成剩余活性污泥量。因而所需氧量为:

处理污水量为21600m3/d,经沉淀后的BOD5为250mg/L,

希望处理后的出水BOD5为20mg/L。要求确定曝气池的体积、排泥量和空气量。经研究,还确立下列条件:

(1)污水温度为20℃;

(2)曝气池中混合液挥发性悬浮固体(MLVSS)同混合液悬浮固体(MLSS)之比为0.8;

(3)回流污泥SS浓度为10000mg/L;

(4)曝气池中MLSS为3500 mg/L;

(5)设计的θc为10d;

(6)出水中含有22mg/L生物固体,其中65%是可生化的;

(7)污水中含有足够的生化反应所需的氧、磷和其他微量元素;

(8)污水流量的总变化系数为2.5。


确定出水中悬浮固体的 有机物在生化反应中有部分被氧化,有部分合成微生物,形成剩余活性污泥量。因而所需氧量为:BOD5 :

(a)悬浮固体中可生化的部分为0.65×22 mg/L=14.2mg/L

(b)可生化悬浮固体的最终BODL =0.65×22×1.4 mg/L=20.3mg/L

(c)可生化悬浮固体的BODL为BOD5=0.68×20.3 mg/L=13.8mg/L

(d)确定经曝气池处理后的出水溶解性BOD5 ,即ρs

20 mg/L=ρs+13.8 mg/L ρs=6.2 mg/L

计算处理效率E :

若沉淀池能去除全部悬浮固体,则处理效率可达

1.估计出水中溶解性BOD5的浓度

出水中总的BOD5=出水中溶解性的BOD5+出水中悬浮固体的BOD5


有机物在生化反应中有部分被氧化,有部分合成微生物,形成剩余活性污泥量。因而所需氧量为:

2.计算曝气池的体积

已知

则:


有机物在生化反应中有部分被氧化,有部分合成微生物,形成剩余活性污泥量。因而所需氧量为:

3.计算每天排除的剩余活性污泥量

计算yobs

计算排除的以挥发性悬浮固体计的污泥量

计算排除的以SS计的污泥量


有机物在生化反应中有部分被氧化,有部分合成微生物,形成剩余活性污泥量。因而所需氧量为:

4.计算回流污泥比r

曝气池中VSS浓度=3500mg/L

回流污泥VSS浓度=8000mg/L


有机物在生化反应中有部分被氧化,有部分合成微生物,形成剩余活性污泥量。因而所需氧量为:

5.计算曝气池的水力停留时间


首先计算曝气池所需的氧量 有机物在生化反应中有部分被氧化,有部分合成微生物,形成剩余活性污泥量。因而所需氧量为:

(1)生化反应中含碳有机物全部生化所需的氧量:

6.计算曝气池所需的空气量

(2)生化反应所需氧量:

所需氧量=(7744-1.42×1645.7) kg/d=5407.1kg/d


其次根据所需的氧量计算相应的空气量 有机物在生化反应中有部分被氧化,有部分合成微生物,形成剩余活性污泥量。因而所需氧量为:

(1)若空气密度为1.201kg/m3,空气中含有的氧量为23.2%,则所需的理论空气量为:

6.计算曝气池所需的空气量

(2)实际所需的空气量为:

(3)设计所需的空气量为:


无机悬浮固体污染物 有机物在生化反应中有部分被氧化,有部分合成微生物,形成剩余活性污泥量。因而所需氧量为:

悬浮固体污染物(包括胶体)

不可生物降解有机悬浮固体污染物

有机悬浮固体污染物

可生物降解的有机悬浮固体污染物

无机溶解性污染物

可生物降解

的有机物

溶解性污染物

有机溶解性污染物

不可生物降

解有机物

麦金尼(McKinney)法

1.麦氏认为污水中污染物的状态和组成可图示如下


无机悬浮固体污染物 有机物在生化反应中有部分被氧化,有部分合成微生物,形成剩余活性污泥量。因而所需氧量为:

基本吸附于微生物表面混入污泥

不可生物降解有机悬浮固体污染物

可生物降解有机悬浮固体污染物

转化为新的微生物机体和CO2、H2O

可生物降解的有机溶解性污染物

部分转移到新的生物机体中

无机溶解性污染物

部分留于废水中

不可生物降解有机溶解性污染物

基本留于废水中

污染物的吸附转化情况


活性污泥法过程中污染物吸附转化定量关系的要点活性污泥法过程中污染物吸附转化定量关系的要点

(1)在良好的状态下,无机和不可降解的悬浮固体经活性污泥法处理,基本上被微生物吸附,其量不变。

(2)对于城市生活污水,其中可生物降解的有机物量约为2/3转化为微生物细胞,1/3氧化为CO2和水。氧化过程释放的能量供微生物繁殖和活动之需。

(3)活性污泥法统中,既存在着有机物质的代谢和微生物的增长繁殖,也存在着细胞物质的自身代谢和微生物之间通过食物链进行的代谢过程。

(4)由于内源代谢产物的不可生物降解性,使可生物降解有机物的化学需氧量CODB不等于完全生化需氧量BODL 。

(5)各种形态的活性污泥的细胞组成基本相同。根据分析,其组成可用C5H9O2.5N或C5H7NO2表示。


麦金尼活性污泥法过程中污染物吸附转化定量关系的要点(McKinney)法

2.完全混合曝气池中的基质去除率方程

基质去除率方程:

(1)当有机物完全处理时,出流中的BOD5很低,Ks»ρs,

则上式变为:


(2)在完全混合曝气池中的混合液是均匀的,因而有机物在曝气池中的代谢速率是均匀的,则:


式中: (2)在完全混合曝气池中的混合液是均匀的,因而有机物在曝气池中的代谢速率是均匀的,则:Km——代谢速率系数, Km随水温变化。

当水温为20℃时,城市污水的Km=15/h;

当水温为10℃时,Km=7.5/h;

当水温为30℃时,Km=30/h。

上述规律适用于5~35℃的温度范围。


(2)在完全混合曝气池中的混合液是均匀的,因而有机物在曝气池中的代谢速率是均匀的,则:

MLSS

活性细胞Ma

混合液挥发性悬浮固体MLVSS

内源代谢残留的微生物有机体Me

未代谢的不可生化的有机悬浮固体Mi

无机悬浮固体Mii

麦金尼(McKinney)法

3.混合液悬浮固体浓度的计算

混合液的悬浮固体,即活性污泥的组成部分


活性污泥各组成部分的计算 (2)在完全混合曝气池中的混合液是均匀的,因而有机物在曝气池中的代谢速率是均匀的,则:

对完全混合曝气池进行物料平衡,得:

Mi在处理过程中不发生反应,而随θC累积:

式中:MiO——t小时内污水流入曝气池中的不可生化的有机悬浮固体量。


溶解于水中的 (2)在完全混合曝气池中的混合液是均匀的,因而有机物在曝气池中的代谢速率是均匀的,则:

随水从二沉池漂出的污泥即Ma中的

麦金尼(McKinney)法

4.出流污水的BOD5计算

出流污水中的可降解有机物包括两部分

出流污水BOD5:

式中:Eff表示出流,M表示MLSS。


代谢基质 (2)在完全混合曝气池中的混合液是均匀的,因而有机物在曝气池中的代谢速率是均匀的,则:

内源代谢

需氧速率为二部分之和

麦金尼(McKinney)法

5.需氧速率

曝气池中氧的用途


麦金尼 (2)在完全混合曝气池中的混合液是均匀的,因而有机物在曝气池中的代谢速率是均匀的,则:(McKinney)法

麦氏认为上面完全混合曝气池体积的计算式同样可以用于推流的计算,但活性污泥中各组分的计算则要根据供氧的情况来确定。


(2)在完全混合曝气池中的混合液是均匀的,因而有机物在曝气池中的代谢速率是均匀的,则:

设城市污水厂的BOD5为200mg/L,SS为200mg/L,其中80%为VSS,VSS中40%为不可降解的惰性物质。污水经过初次沉淀后,BOD5的去除率为30%,SS的去除率为60%,污水最大流量为420m3/h,要求处理后出流的SS为20mg/L左右,BOD5小于10mg/L。计算曝气池的体积和需氧量。


(2)在完全混合曝气池中的混合液是均匀的,因而有机物在曝气池中的代谢速率是均匀的,则:

1.计算曝气池的体积

若出水BOD5为7 mg/L,一般曝气池的MLSS为2000 mg/L,其中Ma35%左右,则可以计算出流中溶解性BOD5为:

曝气池体积为:


(2)在完全混合曝气池中的混合液是均匀的,因而有机物在曝气池中的代谢速率是均匀的,则:

2.计算MLSS

(1) Ma的计算

泥龄θc一般为t的20倍,故采用5d,即120h,所以:


(2)在完全混合曝气池中的混合液是均匀的,因而有机物在曝气池中的代谢速率是均匀的,则:

2.计算MLSS

(2)Me的计算


(2)在完全混合曝气池中的混合液是均匀的,因而有机物在曝气池中的代谢速率是均匀的,则:

2.计算MLSS

(3)Mi的计算


(2)在完全混合曝气池中的混合液是均匀的,因而有机物在曝气池中的代谢速率是均匀的,则:

2.计算MLSS

(4)Mii的计算


(2)在完全混合曝气池中的混合液是均匀的,因而有机物在曝气池中的代谢速率是均匀的,则:

2.计算MLSS

(5)MLSS的计算


(2)在完全混合曝气池中的混合液是均匀的,因而有机物在曝气池中的代谢速率是均匀的,则:

3.计算理论需氧速率

每天的理论需氧量为:


第十节 (2)在完全混合曝气池中的混合液是均匀的,因而有机物在曝气池中的代谢速率是均匀的,则:二次沉淀池


二次沉淀池的功能要求 (2)在完全混合曝气池中的混合液是均匀的,因而有机物在曝气池中的代谢速率是均匀的,则:

1.澄清(固液分离)

2.污泥浓缩(使回流污泥的含水率降低,回流污泥的体积减少)


二沉池的实际工作情况 (2)在完全混合曝气池中的混合液是均匀的,因而有机物在曝气池中的代谢速率是均匀的,则:

(1)二沉池中普遍存在着四个区:清水区、絮凝区、成层沉降区、压缩区。两个界面:泥水界面和压缩界面。

(2)混合液进入二沉池以后,立即被稀释,固体浓度大大降低,形成一个絮凝区。絮凝区上部是清水区,两者之间有一泥水界面。

(3)絮凝区后是一个成层沉降区,在此区内,固体浓度基本不变,沉速也基本不变。絮凝区中絮凝情况的优劣,直接影响成层沉降区中泥花的形态、大小和沉速。

(4)靠近池底处形成污泥压缩区。


二沉池的实际工作情况 (2)在完全混合曝气池中的混合液是均匀的,因而有机物在曝气池中的代谢速率是均匀的,则:

二沉池的澄清能力与混合液进入池后的絮凝情况密切相关,也与二沉池的表面面积有关。

二沉池的浓缩能力主要与污泥性质及泥斗的容积有关。

对于沉降性能良好的活性污泥,二沉池的泥斗容积可以较小。


基本原理 (2)在完全混合曝气池中的混合液是均匀的,因而有机物在曝气池中的代谢速率是均匀的,则:


二次沉淀池的构造和计算 (2)在完全混合曝气池中的混合液是均匀的,因而有机物在曝气池中的代谢速率是均匀的,则:

二次沉淀池在构造上要注意以下特点:

(1)二次沉淀池的进水部分,应使布水均匀并造成有利于絮凝的条件,使泥花结大。

(2)二沉池中污泥絮体较轻,容易被出流水挟走,要限制出流堰处的流速,使单位堰长的出水量不超过10m3/(m·h)。

(3)污泥斗的容积,要考虑污泥浓缩的要求。在二沉池内,活性污泥中的溶解氧只有消耗,没有补充,容易耗尽。缺氧时间过长可能影响活性污泥中微生物的活力,并可能因反硝化而使污泥上浮,故浓缩时间一般不超过2h。


二次沉淀池的构造和计算 (2)在完全混合曝气池中的混合液是均匀的,因而有机物在曝气池中的代谢速率是均匀的,则:

二次沉淀池的容积计算方法可用下列两个公式反映:

式中:A——澄清区表面积,m2;

qv——废水设计流量,用最大时流量,m3/h;

u——沉淀效率参数,m3/(m2·h)或m/h;

V——污泥区容积,m3;

r——最大污泥回流比;

t——污泥在二次沉淀池中的浓缩时间,h。


第十一节 活性污泥法系统设计和 (2)在完全混合曝气池中的混合液是均匀的,因而有机物在曝气池中的代谢速率是均匀的,则:

运行中的一些重要问题


  • 水力负荷 (2)在完全混合曝气池中的混合液是均匀的,因而有机物在曝气池中的代谢速率是均匀的,则:

  • 有机负荷

  • 微生物浓度

  • 曝气时间

  • 微生物平均停留时间(MCRT)

  • 氧传递速率

  • 回流污泥浓度

  • 回流污泥率

  • 曝气池的构造

  • 十、pH和碱度

  • 十一、溶解氧浓度

  • 十二、污泥膨胀及其控制


一天内的流量变化 (2)在完全混合曝气池中的混合液是均匀的,因而有机物在曝气池中的代谢速率是均匀的,则:

随季节的流量变化

雨水造成的流量变化

泵的选择不当造成的流量变化

一、水 力 负 荷

流向污水厂的流量变化


一、水 力 负 荷 (2)在完全混合曝气池中的混合液是均匀的,因而有机物在曝气池中的代谢速率是均匀的,则:

  • 水力负荷的变化影响活性污泥法系统的曝气池和二次沉淀池。

  • 当流量增大时,污水在曝气池内的停留时间缩短,影响出水质量,同时影响曝气池的水位。若为机械表面曝气机,由于水面的变化,它的运行就变得不稳定。

  • 对二次沉淀池为水力影响。


二、有机负荷率 (2)在完全混合曝气池中的混合液是均匀的,因而有机物在曝气池中的代谢速率是均匀的,则:N

曝气区容积的计算,设计中要考虑的主要问题是如何确定污泥负荷率N和MLSS的设计值。

  • 污泥负荷率N和MLSS的设计值采用得大一些,曝气池所需的体积可以小一些。

  • 但出水水质要降低,而且使剩余污泥量增多,增加了污泥处置的费用和困难,同时,整个处理系统较不耐冲击,造成运行中的困难。

  • 为避免剩余污泥处置上的困难和保持污水处理系统的稳定可靠,可以采用低的污泥负荷率(<0.1),把曝气池建得很大,这就是延时曝气法。


其一,污泥量并不就是微生物的活细胞量。曝气池污泥量的增加意味着泥龄的增加,泥龄的增加就使污泥中活细胞的比例减小其一,污泥量并不就是微生物的活细胞量。曝气池污泥量的增加意味着泥龄的增加,泥龄的增加就使污泥中活细胞的比例减小。

其二,过高的微生物浓度使污泥在后续的沉淀池中难以沉淀,影响出水水质。

其三,曝气池污泥的增加,就要求曝气池中有更高的氧传递速率,否则,微生物就受到抑制,处理效率降低。采用一定的曝气设备系统,实际上只能够采用相应的污泥浓度,MLSS的提高是有限度的。

三、微生物浓度

在设计中采用高的MLSS并不能提高效益,原因如下:


当曝气池做得较小时,曝气设备是按系统的负荷峰值控制设计的。这样,在非高峰时间,供氧量过大,造成浪费,设备的能力不能得到充分利用。当曝气池做得较小时,曝气设备是按系统的负荷峰值控制设计的。这样,在非高峰时间,供氧量过大,造成浪费,设备的能力不能得到充分利用。

若曝气池做得大些,可降低需氧速率,同时由于负荷率的降低,曝气设备可以减小,曝气设备的利用率得到提高。

四、曝气时间

在通常情况下,城市污水的最短曝气时间为3h或更长些,这和满足曝气池需氧速率有关。


当曝气池做得较小时,曝气设备是按系统的负荷峰值控制设计的。这样,在非高峰时间,供氧量过大,造成浪费,设备的能力不能得到充分利用。、微生物平均停留时间(MCRT)(又称泥龄)

微生物平均停留时间至少等于水力停留时间,此时,曝气池内的微生物浓度很低,大部分微生物是充分分散的。

微生物的停留时间应足够长,促使微生物能很好地絮凝,以便重力分离,但不能过长,过长反而会使絮凝条件变差。

微生物平均停留时间还有助于说明活性污泥中微生物的组成。世代时间长于微生物平均停留时间的那些微生物几乎不可能在该活性污泥中繁殖。


氧传递到水中当曝气池做得较小时,曝气设备是按系统的负荷峰值控制设计的。这样,在非高峰时间,供氧量过大,造成浪费,设备的能力不能得到充分利用。

氧真正传递到微生物的膜表面

必须有充足的氧量

必须使混合液中的悬浮固体保持悬浮状态和紊动条件

六、氧传递速率

氧传递速率要考虑二个过程

要提高氧的传递速率


七、当曝气池做得较小时,曝气设备是按系统的负荷峰值控制设计的。这样,在非高峰时间,供氧量过大,造成浪费,设备的能力不能得到充分利用。回流污泥浓度

回流污泥浓度是活性污泥沉降特性和回流污泥回流速率的函数。

按右图进行物料衡算,可推得下列关系式:

式中:ρsa——曝气池中的MLSS,mg/L;

ρsr——回流污泥的悬浮固体浓度,mg/L;

r——污泥回流比。

根据上式可知,曝气池中的MLSS不可能高于回流污泥浓度,两者愈接近,回流比愈大。限制MLSS值的主要因素是回流污泥的浓度。


七、当曝气池做得较小时,曝气设备是按系统的负荷峰值控制设计的。这样,在非高峰时间,供氧量过大,造成浪费,设备的能力不能得到充分利用。回流污泥浓度

活性污泥体积指数SVI

衡量活性污泥的沉降浓缩特性的指标,它是指曝气池混合液沉淀30min后,每单位质量干泥形成的湿泥的体积,常用单位是mL/g。

SVI的测定

(1)在曝气池出口处取混合液试样;

(2)测定MLSS(g/L);

(3)把试样放在一个1000mL的量筒中沉淀30min,读出活性污泥的体积(mL);

(4)按下式计算:


当曝气池做得较小时,曝气设备是按系统的负荷峰值控制设计的。这样,在非高峰时间,供氧量过大,造成浪费,设备的能力不能得到充分利用。、污泥回流率

高的污泥回流率增大了进入沉淀池的污泥流量,增加了二沉池的负荷,缩短了沉淀池的沉淀时间,降低了沉淀效率,使未被沉淀的固体随出流带走。

活性污泥回流率的设计应有弹性,并应操作在可能的最低流量。这为沉淀池提供了最大稳定性。


示踪剂的研究表明当曝气池做得较小时,曝气设备是按系统的负荷峰值控制设计的。这样,在非高峰时间,供氧量过大,造成浪费,设备的能力不能得到充分利用。:推流式曝气池的纵向混合很严重

氧消耗率的数据表明:氧的传递受到限制

处理量小时,只配有一个机械曝气机,很容易围绕曝气机形成混合区

处理量大时,曝气池也相应增大,曝气池不是充分完全混合的

九、曝气池的构造

推流式曝气池

完全混合式曝气池


活性污泥当曝气池做得较小时,曝气设备是按系统的负荷峰值控制设计的。这样,在非高峰时间,供氧量过大,造成浪费,设备的能力不能得到充分利用。pH通常为6.5~8.5。

pH之所以能保持在这个范围,是由于污水中的蛋白质代谢后产生碳酸铵碱度和从天然水中带来的碱度所致。

生活污水中有足够的碱度使pH保持在较好的水平。

工业污水中经常缺少蛋白质,因而产生pH过低的问题。工业废水中的有机酸通常在进入曝气池前进行中和。

十、pH和碱度


十一当曝气池做得较小时,曝气设备是按系统的负荷峰值控制设计的。这样,在非高峰时间,供氧量过大,造成浪费,设备的能力不能得到充分利用。、溶解氧浓度

通常溶解氧浓度不是一个关键因素,除非溶解氧浓度跌落到接近于零。只要细菌能获得所需要的溶解氧来进行代谢,其代谢速率就不受溶解氧的影响。

一般认为混合液中溶解氧浓度应保持在0.5~2mg/L,以保证活性污泥系统的正常运行。

过分的曝气使氧浓度得到提高,但由于紊动过于剧烈,导致絮状体破裂,使出水浊度升高。

特别是对于好氧速度不快而泥龄偏长的系统,强烈混合使破碎的絮状体不能很好地再凝聚。


并无大量丝状菌存在的非丝状菌性膨胀当曝气池做得较小时,曝气设备是按系统的负荷峰值控制设计的。这样,在非高峰时间,供氧量过大,造成浪费,设备的能力不能得到充分利用。

污泥中丝状菌大量繁殖导致的丝状菌性膨胀

十二、污泥膨胀及其控制

正常的活性污泥沉降性能良好,其污泥体积指数SVI在50~150之间;当活性污泥不正常时,污泥不易沉淀,反映在SVI值升高。

混合液在1000mL量筒中沉淀30min后,污泥体积膨胀,上层澄清液减少,这种现象称为活性污泥膨胀。

活性污泥膨胀可分为


正常的活性污泥当曝气池做得较小时,曝气设备是按系统的负荷峰值控制设计的。这样,在非高峰时间,供氧量过大,造成浪费,设备的能力不能得到充分利用。

絮花状物质,其骨干是菌胶团

不正常的情况下

丝状菌大量出现,主要是有鞘细菌和硫细菌

当污泥中有大量丝状菌时,大量有一定强度的丝状体相互支撑、交错,大大恶化了污泥的沉降、压缩性能,形成了污泥膨胀。


污水水质当曝气池做得较小时,曝气设备是按系统的负荷峰值控制设计的。这样,在非高峰时间,供氧量过大,造成浪费,设备的能力不能得到充分利用。

污水水质是造成污泥膨胀的最主要因素。

含溶解性碳水化合物多的污水往往发生由浮游球衣细菌引起的丝状膨胀。

运行条件

含硫化物多的污水往往发生由硫细菌引起的丝状膨胀。

水温低于15℃时,一般不会发生膨胀。

工艺方法

pH低时,容易产生膨胀。

胀的主要因素


污泥负荷对污泥膨胀在一定条件下有一定的影响污泥负荷对污泥膨胀在一定条件下有一定的影响,但两者无必然的联系。

溶解氧浓度并不一定影响污泥的膨胀。

胀的主要因素

污水水质

运行条件

工艺方法


完全混合的工艺方法比传统的推流方式较易发生污泥膨胀完全混合的工艺方法比传统的推流方式较易发生污泥膨胀。

间歇运行的曝气池最不容易发生污泥膨胀。

不设初次沉淀池的活性污泥法,不容易发生污泥膨胀。

叶轮式机械曝气与鼓风曝气相比,易于发生丝状菌性膨胀。

射流曝气的供氧方式可以有效地克制浮游球衣细菌引起的污泥膨胀。

胀的主要因素

污水水质

运行条件

工艺方法


非丝完全混合的工艺方法比传统的推流方式较易发生污泥膨胀

发生污泥非丝状菌性膨胀时,处理效率仍很高,上清液也清澈。

非丝状菌性膨胀主要发生在污水水温较低而污泥负荷太高时。

微生物的负荷高,细菌吸收了大量的营养物,但由于温度低,代谢速度较慢,就积贮起大量高黏性的多糖类物质。这些多糖类物质的积贮,使活性污泥的表面附着水大大增加,使污泥形成污泥膨胀。


(1)完全混合的工艺方法比传统的推流方式较易发生污泥膨胀控制曝气量,使曝气池中保持适量的溶解氧;

(2)调整pH;

(3)如磷、氮的比例失调,可适量投加氮化合物和磷化合物;

(4)投加一些化学药剂;

(5)城市污水厂的污水在经过沉砂池后,跳跃初沉池,直接进入曝气池。

在运行中,如发生污泥膨胀,针对膨胀的类型和丝状菌的特性,可采取的抑制措施:


(1)完全混合的工艺方法比传统的推流方式较易发生污泥膨胀减少城市污水厂的初沉池或取消初沉池,增加进入曝气池的污水中的悬浮物,可使曝气池中的污泥浓度明显提高,污泥沉降性能改善;

(2)两级生物处理法,即采用沉砂池—一级曝气池—中间沉淀池—二级曝气池—二次沉淀池的工艺等工艺;

(3)对于现有的容易发生污泥严重膨胀的污水厂,可以在曝气池的前面部分补充设置足够的填料(降低了曝气池的污泥负荷,也改变了进入后面部分曝气池的水质);

(4)用气浮法代替二次沉淀池,可以有效地使这个处理系统维持正常运行。

在设计时,对于容易发生污泥膨胀的污水,可以采用以下一些方法:


ad