PEMODELAN MATEMATIKA

1 / 16

# PEMODELAN MATEMATIKA - PowerPoint PPT Presentation

PEMODELAN MATEMATIKA. Kudang B. Seminar. KARAKTERISTIK BUAH JERUK KEPROK GARUT MELALUI PEMODELAN RANGKAIAN LISTRIK YANG DIDASARKAN PADA SIFAT RESISTIF DAN KAPASITIFNYA (J. Juansah , W. Budiastra , K. Dahlan , K.B. Seminar 2013).

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## PowerPoint Slideshow about ' PEMODELAN MATEMATIKA' - gallia

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

### PEMODELAN MATEMATIKA

Kudang B. Seminar

KARAKTERISTIK BUAH JERUK KEPROK GARUT MELALUI PEMODELAN RANGKAIAN LISTRIK YANG DIDASARKAN PADA SIFAT RESISTIF DAN KAPASITIFNYA (J. Juansah, W. Budiastra, K. Dahlan, K.B. Seminar 2013)

Diagram alirprinsipkarakteristikpemodelanspektroskopiimpedansi (Macdonald 1987)

INTERPRETASI: Hal itujugamenjadipertimbanganbahwabijidominanresistif, sementarakulit, SACS, danbuahutuhmemilikikomponenkapasitif

Coefficient of Determination

The coefficient of determination, denoted R2 and pronounced R squared, indicates how well data points fit a line or curve.

PengukuranAkurasi Model

The mean absolute percentage error (MAPE), also known as mean absolute percentage deviation (MAPD), is a measure of accuracy of a method for constructing fitted time series values in statistics, specifically in trend estimation. It usually expresses accuracy as a percentage, and is defined by the formula:

At :The actual value Ft :The forecast value

The root-mean-square deviation (RMSD) or root-mean-square error (RMSE) is a frequently used measure of the differences between values predicted by a model or an estimator and the values actually observed. The RMSD serves to aggregate the magnitudes of the errors in predictions for various times into a single measure of predictive power. RMSD is a good measure of accuracy, but only to compare forecasting errors of different models for a particular variable and not between variables, as it is scale-dependent.

: predicted values for times t

: regression dependent variable

Koefisendeterministik (a), MAPE (b), dan RMSE (c) padahasilsimulasiuntuk model barupadabeberapatingkatkeasaman (pH). Nilai parameter impedansi (Z/m), reaktansi (X/m), danresistansi (R/m) dalamorde

HubunganantaraResistensidan Tingkat KeasamanJerukKeprok

INTERPRETASI: Makin tinggitingkatkeasamanmakinrendahnilairesistensinya.

HubunganantaraResistensidan Tingkat KekerasanJerukKeprok

INTERPRETASI: Makin tinggitingkatkekerasanmakintingginilairesistensinya.

HubunganantaraKapasitansidan Tingkat KeasamanJerukKeprok

INTERPRETASI: Makin tinggitingkatkeasamanmakintingginilaikapasitansinya.

HubunganantaraKapasitansidan Tingkat KeasamanJerukKeprok

INTERPRETASI: Makin tinggitingkatkekerasanmakinrendahnilaikapasitansinya.

KesimpulanPengamatan
• InterpretasisifatlistrikmemberipeluangdankesempatanuntukmeninjauperilakukematanganJerukKeprokGarut.
• Taksatu pun dari model listrikmampumemprediksisemuaperubahanperilakusecarasempurna.
• Model yang dikembangkanJuansahet almemilikikinerjaakurasi yang lebihbaikdibandingkanmodel Hayden danZhang
• Pembentukan model listriktelahmembantupemahamankitatentangkarakteristikbuahJerukKeprokGarut.
• Perubahankekerasandankeasamandalambuah-buahandiikutidenganperubahankapasitansimembrandanresistansikomponenjaringanpenyusunbuah.