1 / 58

Observing the Universe by Going Underground

50. Years of Physics at the Weizmann Institute of Science. Observing the Universe by Going Underground. ZOOMING OUT by ZOOMING IN. HAIM HARARI. May 12 th , 2004. “ZOOMING IN”. Matter. Chemical Elements. ~100. 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

gaerwn
Download Presentation

Observing the Universe by Going Underground

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 50 Years of Physics at the Weizmann Institute of Science Observing the Universe by Going Underground ZOOMING OUT by ZOOMING IN HAIM HARARI May 12th, 2004

  2. “ZOOMING IN” Matter Chemical Elements ~100 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Atoms ~100 1954 2004

  3. 13.7G yr 1017 sec NOW Life Stars 1016 sec ~100M yr Galaxies 300K yr 1013 sec “ZOOMING OUT” Atoms 102 sec 3 min 1 sec 10-6 sec 10-11 sec 10-25 sec 10-43 sec

  4. “ZOOMING IN”Into the ATOM Matter Chemical Elements ~100 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Atoms ~100 Nucleus ~100 1954 2004

  5. Radioactive b-Decay e- A1 A2 + e-

  6. “ZOOMING IN”Into the ATOM Matter Chemical Elements ~100 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Atoms ~100 e Nucleus ~100 1954 Systematics: “Periodic Table” Mendeleyev Collisions and Interactions Chemistry “Smashing” Experiments Rutherford 2004

  7. Radioactive b-Decay e- e- e- e- N1 N2 + e-

  8. Radioactive b-Decay n e- e- e- e- N1 N2 + e- + n

  9. “ZOOMING IN”Into the NUCLEUS Matter Chemical Elements ~100 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Atoms ~100 e Nucleus ~100 n p, n ~ 4 1954 2004

  10. Radioactive b-Decay n e- e- e- n e- e- n p p n n  p + e- + n

  11. 13.7G yr 1017 sec NOW Life Stars 1016 sec ~100M yr Galaxies 300K yr 1013 sec “ZOOMING OUT” Atoms 102 sec 3 min Heavy Nuclei 1 sec Light Nuclei 10-6 sec 10-11 sec 10-25 sec 10-43 sec

  12. Only b-decay Can Convert n  p Nuclear Reactions: The Dream of the Alchemists Mass Converted to Energy Energy of the Sun Creation of Heavy Elements Antiparticles p n e n p n e n THE BIG BANG Equal Numbers of Particles and Antiparticles? Why p and e Have Equal and Opposite Charge?

  13. “ZOOMING IN”Into the PROTON & NEUTRON Matter Chemical Elements ~100 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Atoms ~100 e Nucleus ~100 n Antiparticles p, n ~ 4 m p, K,… 1954 Hadrons ~100 2004

  14. 1 1 + + 2 3 2 3 + + 1 3 1 3 1 3 1 3 + + Electric Charge Electric Charge 0 0 1 3 1 3 - - 2 3 2 3 - - 1 1 - - ne e- m-

  15. Baryons +2 +1 0 -1 p n Electric Charge 0 -1 -2 -3 “Strangeness”

  16. Baryons Mesons +2 +1 0 -1 +1 0 -1 p p K p n K Electric Charge K Electric Charge p K 0 -1 -2 -3 -1 0 +1 “Strangeness” “Strangeness”

  17. Baryons Mesons +2 +1 0 -1 +1 0 -1 p p K p n K Electric Charge K Electric Charge p K 0 -1 -2 -3 -1 0 +1 “Strangeness” “Strangeness” Quarks + _ u 2 3 1 3 d s 0 -1

  18. Baryons Mesons +2 +1 0 -1 +1 0 -1 uuu p p uud uus K p n K Electric Charge udd uds uss K Electric Charge p K ddd dds dss sss 0 -1 -2 -3 -1 0 +1 “Strangeness” “Strangeness” Quarks + _ u 2 3 1 3 d s 0 -1

  19. Mesons +2 +1 0 -1 +1 0 -1 uuu p uud uus n Electric Charge udd uds uss Electric Charge ddd dds dss sss 0 -1 -2 -3 -1 0 +1 “Strangeness” “Strangeness” Baryons p K p K K p K Quarks Anti-Quarks + _ u 2 3 1 3 + _ s d 1 3 2 3 d s u 0 -1 +1 0

  20. Baryons Mesons +2 +1 0 -1 +1 0 -1 uuu p p uud uus us ud K p n K Electric Charge udd uds uss ds uu dd ss sd K Electric Charge p K ddd dds dss sss du su 0 -1 -2 -3 -1 0 +1 “Strangeness” “Strangeness” Quarks Anti-Quarks + _ u 2 3 1 3 + _ s d 1 3 2 3 d s u 0 -1 +1 0

  21. “ZOOMING IN”Into the PROTON & NEUTRON Matter Chemical Elements ~100 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Atoms ~100 e Nucleus ~100 n Antiparticles p, n ~ 4 m p, K,… 1954 nm Hadrons ~100 Quarks ~ 7 2004

  22. 1 1 + + 2 3 2 3 + + 1 3 1 3 1 3 1 3 + + Electric Charge Electric Charge 0 0 1 3 1 3 - - 2 3 2 3 - - 1 1 - - Leptons Quarks u ne d s e- m-

  23. 1 1 + + 2 3 2 3 + + 1 3 1 3 1 3 1 3 + + Electric Charge Electric Charge 0 0 1 3 1 3 - - 2 3 2 3 - - 1 1 - - Leptons Quarks u ne nm d s e- m-

  24. Baryon-Mesons Collisions Time B1 B2 B* M1 M2

  25. Baryon-Mesons Collisions Time B1 B2 B1 B2 B* M* M1 M2 M1 M2

  26. Baryon-Mesons Collisions Time B1 B2 B1 B2 B* M* M1 M2 M1 M2 B1 B2 M1 M2 Duality Diagram

  27. Baryon-Mesons Collisions Time B1 B2 B1 B2 B* M* M1 M2 M1 M2 B1 B2 B* M1 M2 Duality Diagram

  28. Baryon-Mesons Collisions Time B1 B2 B1 B2 B* M* M1 M2 M1 M2 B1 B2 M* M1 M2 Duality Diagram

  29. Baryon-Mesons Collisions Time B1 B2 B1 B2 B* M* M1 M2 M1 M2 B1 B2 B* M* Meson Is a “String” Can Split Into Two M1 M2 Duality Diagram

  30. Deep Inelastic Scattering e e P Hadrons All Hadrons Made of Quarks Free Quarks Do Not Exist Only at Very Short Distance They Can Be Detected Early Universe - Soup of Quarks and Antiquarks

  31. Stanford Linear Accelerator

  32. Radioactive b-Decay n e- e- e- n e- e- n p n p n e- d d  u + e- +n

  33. “ZOOMING IN”Into the PROTON & NEUTRON Matter Chemical Elements ~100 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Atoms ~100 e Nucleus ~100 n Antiparticles p, n ~ 4 m p, K,… 1954 nm Hadrons ~100 Quarks ~ 7 Systematics: “Periodic Table” Eightfold Way Collisions and Interactions Duality+Quark Counting “Smashing” Experiments Deep Inelstic 2004

  34. 1 1 + + 2 3 2 3 + + 1 3 1 3 1 3 1 3 + + Electric Charge Electric Charge 0 0 1 3 1 3 - - 2 3 2 3 - - 1 1 - - Leptons Quarks u c ne nm d s e- m-

  35. 1 1 + + 2 3 2 3 + + 1 3 1 3 1 3 1 3 + + Electric Charge Electric Charge 0 0 1 3 1 3 - - 2 3 2 3 - - 1 1 - - Leptons Quarks u c t ne nm nt d s b e- m- t-

  36. “ZOOMING IN”Into the QUARK & LEPTON Matter Chemical Elements ~100 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Atoms ~100 e Nucleus ~100 n Antiparticles p, n ~ 4 m p, K,… 1954 nm Hadrons ~100 Quarks ~ 7 t c b 2004 n t t ~ 20

  37. 1 1 + + 2 3 2 3 + + 1 3 1 3 1 3 1 3 + + Electric Charge Electric Charge 0 0 1 3 1 3 - - 2 3 2 3 - - 1 1 - - Leptons Quarks u c t ne nm nt d s b e- m- t-

  38. Three Generations of Quarks & Leptons Quark Mixing Heavy Quarks decay fast Heavy Quarks are Short-Lived 6 Quarks Masses 3 Mixing Parameters Do Heavy Quarks Matter? Violation of Symmetry between Particle and Antiparticle?

  39. CERN OPAL

  40. 13.7G yr 1017 sec NOW Life Stars 1016 sec ~100M yr Galaxies 300K yr 1013 sec “ZOOMING OUT” Atoms 102 sec 3 min Heavy Nuclei 1 sec Light Nuclei 10-6 sec Protons & Neutrons “Quark Soup” 10-11 sec Particle Masses Generated 10-25 sec 10-43 sec

  41. Solar Neutrinos Cosmic Ray Neutrinos Supernova Neutrinos n - ASTRONOMY Conclusions: Neutrinos Have Masses They Are Extremely Light Masses of ne, nm, nt Are Different ne, nm, nt Mix is n Massless ? Is n Different from n ? Are ne, nm, nt Really Different ? Nuclear Reactions Neutrinos

  42. Kamiokande Japan

  43. 1 1 + + u c t 2 3 2 3 + + 1 3 1 3 1 3 1 3 + + ne nm nt Electric Charge Electric Charge 0 0 d s b 1 3 1 3 - - 2 3 2 3 - - e- m- t- 1 1 - - Leptons Quarks

  44. 1 1 + + u 4M c 1.3G t 170G 2 3 2 3 + + 1 3 1 3 1 3 1 3 + + <8m 8m 30m ne nm nt Electric Charge Electric Charge 0 0 7M d s 150M 5G b 1 3 1 3 - - 2 3 2 3 - - 500K 100M 1.8G e- m- t- 1 1 - - Leptons Quarks

  45. 1 1 + + u c t 2 3 2 3 + + 1 3 1 3 1 3 1 3 + + ne nm nt Electric Charge Electric Charge 0 0 d s b 1 3 1 3 - - 2 3 2 3 - - e- m- t- 1 1 - - Leptons Quarks

More Related