S(t)
Download
1 / 30

{a(k)} - PowerPoint PPT Presentation


  • 73 Views
  • Uploaded on

s(t). r(t). {a(k)}. H tr (f). H ch (f). +. w(t). . r(t). {a(k)}. H (f). +. w(t). r(t). a(k). z(k). H (f). H * (f). +. kT. w(t). . a(k). G(z). z(k). +. n(k) ~N c (0, N 0 g(i-j)). r(t). z(k). u(k). a(k). H (f). H * (f). +. kT. w(t). . z(k). u(k). a(k). G(z).

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' {a(k)}' - fritz-ramsey


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

s(t)

r(t)

{a(k)}

Htr(f)

Hch(f)

+

w(t)

r(t)

{a(k)}

H(f)

+

w(t)


r(t)

a(k)

z(k)

H(f)

H*(f)

+

kT

w(t)

a(k)

G(z)

z(k)

+

n(k) ~Nc(0, N0g(i-j))


r(t)

z(k)

u(k)

a(k)

H(f)

H*(f)

+

kT

w(t)

z(k)

u(k)

a(k)

G(z)

+

n(k) ~Nc(0, N0g(i-j))

u0(k)

a(k)

F+(z)

u(k)

+

w(k) ~Nc(0, (N0/A2)d(i-j))


z(k)

u(k)

a(k)

G(z)

+

n(k) ~Nc(0, N0g(i-j))

a(k)

F+(z)

u(k)

+

w(k) ~Nc(0, (N0/A2)d(i-j))


a(k)

a(k-1)

a(k-L)

...

z-1

z-1

z-1

x

x

f+(1)

f+(L)

S

u0(k)

w(k)

+

u(k)


S(k+1)

Yst(.,.)

a(k)

S(k)

z-1

w(k)

Yout(.,.)

+

u(k)

u0(k)


f-(k)

f+(k)

1

1

x1

(x1)*

(x2)*

x2

x3

(x3)*

x5

(x5)*

0

0

k

k

x4

(x4)*


state

1|2.5

(1, 1)

1|1.5

-1|0.5

(1, -1)

-1|-0.5

1|0.5

(-1, 1)

1|-0.5

-1|-1.5

(-1, -1)

-1|-2.5

k+1

k


state

(1, 1)

(1, -1)

...

(-1, 1)

(-1, -1)

k

k+1

k+2

k+3

k’

k’+1

k’+2

k’+3


(++)

(+0)

(+-)

(0+)

(00)

(0-)

(-+)

(-0)

(--)

k

k+1


20

22

14

(++)

4

6

15

(+0)

5

(+-)

7

6

8

10

(0+)

9

(00)

7

6

5

7

(0-)

2

6

6

(-+)

7

(-0)

14

(--)

13

15

k=3

k=4

k=5

k=0

k=1

k=2


4

16

(1,1)

4

0

0

(1,-1)

4

0

0

(-1,1)

16

4

(-1,-1)

16

36

k=0

k=1

k=2

k=3

k=4


16

4

36

(1,1)

4

16

4

0

(1,-1)

0

0

0

4

(-1,1)

4

0

(-1,-1)

16

4

16

k=0

k=1

k=2

k=3

k=4


16

5

1

(1,1)

9

1

4

0

9

(1,-1)

25

0

0

25

9

(-1,1)

25

49

(-1,-1)

4

81

49

k=0

k=1

k=2

k=3

k=4


16

5

13

16

(1,1)

0

4

4

0

9

25

(1,-1)

4

0

0

25

0

(-1,1)

5

16

4

(-1,-1)

49

41

36

k=0

k=1

k=2

k=3

k=4


z(k)

u(k)

r(t)

symbol-by-

symbol detector

HLE(z)

H*(f)

kT


a(k)

u0(k)

u(k)

GLE(z)

+

HLE(z)

n(k)

~ Nc(0, N0g(i-j))

w(t)


a(k)

u(k)

+

1/G(z)

n(k)

~ Nc(0, N0g(i-j))


a(k)

e(k)

GLE(z) -1

+

HLE(z)

n(k)

~ Nc(0, N0g(i-j))


a(k)

u0(k)

u(k)

+

n(k)

~ Nc(0, N0g(i-j))


z(k)

u’(k)

u(k)

r(t)

symbol-by-

symbol detector

HFF(z)

H*(f)

+

kT

-

HFB(z)


a(k)

u’(k)

u(k)

symbol-by-

symbol detector

G’DFE(z)

+

+

-

HFB(z)

HFF(z)

n(k)

~ Nc(0, N0g(i-j))


a(k)

u(k)

GDFE(z)

+

n’(k)

HFF(z)

n(k)

~ Nc(0, N0g(i-j))


u(k)

a(k)

+

~ Nc(0, (N0/A2)d(i-j))

n’(k)


e(k)

a(k)

GDFE(z) - 1

+

n’(k)

HFF(z)

n(k)

~ Nc(0, N0g(i-j))


e’(k)

e(k)

a(k)

G(z)H’FF(z) - 1

1 - HFB(z)

+

H’FF(z)

n(k)

~ Nc(0, N0g(i-j))


a(k)

u(k)

+

n’(k)

n(k)

~ Nc(0, N0g(i-j))


r(t)

u’(k)

r(t)

z(k)

u’(k)

HFF(z)

H*(f)

Hrec (f)

kT

kT

Ns

u’(k)

u’(k)

r(t)

r(t)

heq (n)

HAA (f)

HAA (f)

Hrec (f)

iTs

kT


r(kNs+KFF1)

r(kNs+1)

r(kNs)

r(kNs-KFF2)

r(kNs-1)

...

...

z-1/Ns

z-1/Ns

heq(1)

heq(-KFF1)

heq(-1)

heq(0)

heq(KFF2)

x

x

x

x

x

S

u’(k)

+

u(k)

S

hFB(1)

hFB(2)

hFB(KFB-1)

hFB(KFB)

x

x

x

x

z-1

z-1

...


r(kNs+KFF1)

r(kNs+1)

r(kNs)

r(kNs-KFF2)

r(kNs-1)

...

...

z-1/Ns

z-1/Ns

heq(1;k)

heq(-KFF1;k)

heq(-1;k)

heq(0;k)

heq(KFF2;k)

x

x

x

x

x

S

u’(k)

+

u(k)

S

hFB(1;k)

hFB(2;k)

hFB(KFB-1;k)

hFB(KFB;k)

x

x

x

x

z-1

z-1

...


ad