Урок-соревнование
This presentation is the property of its rightful owner.
Sponsored Links
1 / 42

Урок-соревнование по теме: «Площади параллелограмма, треугольника и трапеции» PowerPoint PPT Presentation


  • 201 Views
  • Uploaded on
  • Presentation posted in: General

Урок-соревнование по теме: «Площади параллелограмма, треугольника и трапеции». 4. 6. 7. 1. 3. 5. 2. 8. С. В. А. H. D. K. Теорема: Площадь параллелограмма равна произведению его основания на высоту. С. В. А. H. D. K.

Download Presentation

Урок-соревнование по теме: «Площади параллелограмма, треугольника и трапеции»

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


3802381

Урок-соревнование по теме:«Площади параллелограмма, треугольника и трапеции»


3802381

4

6

7

1

3

5

2

8


3802381

С

В

А

H

D

K

Теорема: Площадь параллелограмма равна произведению его основания на высоту


3802381

С

В

А

H

D

K

Теорема: Площадь параллелограмма равна произведению его основания на высоту

Дано:ABCD-параллелограмм

FD-основание

BH, CK- высота

S- площадь ABCD

Доказать:

S=ADBH


3802381

С

В

А

H

D

K

Теорема: Площадь параллелограмма равна произведению его основания на высоту

Доказательство:

ABCK-трапеция

ABCK=ABCD+CDK

ABCK=BHKС+ABH


3802381

С

В

А

H

D

K

Теорема: Площадь параллелограмма равна произведению его основания на высоту

ABH = CDK

AB = CD

1 = 2

Значит, SABH=SCDK

1

2


3802381

С

В

А

H

D

K

Теорема: Площадь параллелограмма равна произведению его основания на высоту

SABCK=SABCD+SCDK

SABCK=SBHKC+SABH


3802381

С

В

А

H

D

K

Теорема: Площадь параллелограмма равна произведению его основания на высоту

SABCD= SBHKC=S


3802381

С

В

А

H

D

K

!Теорема: Площадь параллелограмма равна произведению его основания на высоту

SBHKC= BC BH

Т.к. BC = AD, то

S = AD BH


3802381

Теорема: площадь треугольника равна половине произведения его основания на высоту

C

A

B

H


3802381

Теорема: площадь треугольника равна половине произведения его основания на высоту

C

Дано: ABC

AB-основание

CH-высота

S - площадьABC

Доказать:

S= 1/2ABCH

B

A

H


3802381

Теорема: площадь треугольника равна половине произведения его основания на высоту

C

D

Доказательство:

B

A

H


3802381

Теорема: площадь треугольника равна половине произведения его основания на высоту

C

D

Доказательство:

ABC = DCB т.к.

1.CB-общая

2.AB=DC

3.AC=DB

B

A


3802381

Теорема: площадь треугольника равна половине произведения его основания на высоту

C

D

Доказательство:

S ABDC=2SABC

B

A


3802381

C

D

B

A

H

Теорема: площадь треугольника равна половине произведения его основания на высоту

Доказательство:

S ABDC=CHAB


3802381

C

D

B

A

H

! Теорема: площадь треугольника равна половине произведения его основания на высоту

Доказательство:

SABC=1/2CHAB

Что и требовалось доказать.


3802381

Теорема: площадь трапеции равна произведению полусуммы её оснований на высоту

B

C

D

A

H


3802381

Теорема: площадь трапеции равна произведению полусуммы её оснований на высоту

Дано:ABCD-трапеция

AD, BC-основания

BH- высота

S- площадь ABCD

Доказать:

SABCD=1/2(AD+BC)BH

B

C

D

A

H


3802381

B

C

D

A

H

Теорема: площадь трапеции равна произведению полусуммы её оснований на высоту

Доказательство:

BD-диагональ


3802381

B

C

D

A

H

Теорема: площадь трапеции равна произведению полусуммы её оснований на высоту

Доказательство:

SABCD=SABD+SBCD


3802381

B

C

D

A

H

Теорема: площадь трапеции равна произведению полусуммы её оснований на высоту

Доказательство:

Дополнительное построение.

H1


3802381

Теорема: площадь трапеции равна произведению полусуммы её оснований на высоту

Доказательство:

SABD=1/2 BH AD

B

H1

C

D

A

H


3802381

B

C

D

A

H

Теорема: площадь трапеции равна произведению полусуммы её оснований на высоту

Доказательство:

SBCD=1/2 DH1 BC

H1


3802381

Теорема: площадь трапеции равна произведению полусуммы её оснований на высоту

Доказательство:

DH1=BH

SBCD=1/2 BH BC

B

H1

C

A

D

H


3802381

B

C

D

A

H

Теорема:площадь трапеции равна произведению полусуммы её оснований на высоту

Доказательство:

SABCD=

1/2 BH AD+1/2 BH BC

H1


3802381

! Теорема: площадь трапеции равна произведению полусуммы её оснований на высоту

Доказательство:

SABCD=

1/2(AD+BC)BH

H1

B

C

D

A

H

Что и требовалось доказать.


3802381

Решение задач


3802381

Задача №1

Дано:

ABCD-параллелограмм

AB= 6 см

AD= 10 см

A=300

Найти: S ABCD -?

B

C

6 см

0

30

D

A

10 см


3802381

Задача №1

Ответ:

S ABCD =30см2

B

C

6 см

0

30

D

A

10 см


3802381

Задача №2

Дано:

ABCD-параллелограмм

BD= 5 см

AD=8 cм

A=600

BD AB

Найти: S ABCD -?

B

C

5 cм

0

60

D

A

8 см


3802381

Задача №2

Ответ:

S ABCD =20см2

B

C

5 cм

0

60

D

A

8 см


3802381

Задача №3

Дано:

ABCD-параллелограмм

AD= 12 см

AB=10 cм

B=1500

Найти: S ABCD -?

B

C

0

150

10cм

D

A

12cм


3802381

Задача №3

Ответ

S ABCD =60см2

B

C

0

150

10cм

D

A

12cм


3802381

0

30

Задача №4

B

Дано:

ABC-треугольник

BC= 8 см

AC=9 cм

C=300

Найти: S ABC-?

8 см

A

C

9 см


3802381

0

30

Задача №4

Ответ: S=18 СМ2

B

8 см

A

C

9 см


3802381

Задача №5

Дано:

ABCD-квадрат

AB=5 см

KD=4 см

Найти: S ABC-?

B

C

K

5 см

4 см

A

D


3802381

Задача №5

Ответ:

S ABC=15 см2

B

C

K

A

D


3802381

0

135

Задача №6

Дано:

ABC-треугольник

AD= 7см

ADB=1350

C=900

Найти: S ABC-?

B

A

C

D

8 см

7 см


3802381

0

135

Задача №6

Ответ S ABC=60 см2

B

A

C

D

8 см

7 см


3802381

Домашняя работа

П.51-53 (повторить)

В 1-7, №506, №518(а)

Дополнительно №518 (б)


3802381

Задача

Высота, проведенная из вершины тупого угла прямоугольной трапеции, отсекает квадрат, площадь которого 16 см2.

Найдите площадь трапеции, если её тупой угол равен 1350.


  • Login