1 / 27

SDSS v.s . zCOSMOS Yingjie Peng Advisor: Simon Lilly

H High -resolution SINFONI+AO tomography of z=2 star-forming galaxies: witnessing the growth of disks and bulges . High-resolution SINFONI+AO tomography of z=2 star-forming galaxies: witnessing the growth of disks and bulges . SDSS v.s . zCOSMOS Yingjie Peng Advisor: Simon Lilly.

fisk
Download Presentation

SDSS v.s . zCOSMOS Yingjie Peng Advisor: Simon Lilly

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. HHigh-resolution SINFONI+AO tomography of z=2 star-forming galaxies: witnessing the growth of disks and bulges

  2. High-resolution SINFONI+AO tomography of z=2 star-forming galaxies: witnessing the growth of disks and bulges

  3. SDSS v.s. zCOSMOS • Yingjie Peng • Advisor: Simon Lilly

  4. SpeczWarning Data values SpecZStatus Data values

  5. SELECT G.objid, G.ra, G.dec, G.type, G.primTarget as G_primTarget, G.flags, G.primTarget & dbo.fPrimTarget('TARGET_GALAXY') as G_TARGET_GALAXY, G.primTarget & dbo.fPrimTarget('TARGET_GALAXY_BIG') as G_TARGET_GALAXY_BIG, G.primTarget & dbo.fPrimTarget('TARGET_GALAXY_BRIGHT_CORE') as G_TARGET_GALAXY_BRIGHT_CORE, G.petroMag_u, G.petroMag_g, G.petroMag_r, G.petroMag_i, G.petroMag_z, G.petroMagErr_u, G.petroMagErr_g, G.petroMagErr_r, G.petroMagErr_i, G.petroMagErr_z, G.modelMag_u, G.modelMag_g, G.modelMag_r, G.modelMag_i, G.modelMag_z, G.modelMagErr_u, G.modelMagErr_g, G.modelMagErr_r, G.modelMagErr_i, G.modelMagErr_z, G.psfMag_u, G.psfMag_g, G.psfMag_r, G.psfMag_i, G.psfMag_z, G.psfMagErr_u, G.psfMagErr_g, G.psfMagErr_r, G.psfMagErr_i, G.psfMagErr_z, G.extinction_u, G.extinction_g, G.extinction_r, G.extinction_i, G.extinction_z, G.petroR50_u, G.petroR50_g, G.petroR50_r, G.petroR50_i, G.petroR50_z, G.petroR90_u, G.petroR90_g, G.petroR90_r, G.petroR90_i, G.petroR90_z, S.mjd, S.plate, S.fiberID , S.z, S.zConf, S.specclass, S.zStatus, S.zWarning, S.primTarget as S_primTarget, S.primTarget & dbo.fPrimTarget('TARGET_GALAXY') as S_TARGET_GALAXY, S.primTarget & dbo.fPrimTarget('TARGET_GALAXY_BIG') as S_TARGET_GALAXY_BIG, S.primTarget & dbo.fPrimTarget('TARGET_GALAXY_BRIGHT_CORE') as S_TARGET_GALAXY_BRIGHT_CORE, (S.zWarning & (dbo.fSpecZWarning('LOC') + dbo.fSpecZWarning('NO_SPEC') + dbo.fSpecZWarning('NO_BLUE') + dbo.fSpecZWarning('NO_RED')) ) as S_zWarning , P1.z as P1_z, P1.zErr, P1.nnIsInside, P1.chiSq, P1.pzType, P1.dmod, P1.rest_ug, P1.rest_gr, P1.rest_ri, P1.rest_iz, P1.kcorr_u, P1.kcorr_g, P1.kcorr_r, P1.kcorr_i, P1.kcorr_z, P1.absMag_u, P1.absMag_g, P1.absMag_r, P1.absMag_i, P1.absMag_z, P2.photozcc2, P2.photozerrcc2, P2.photozd1, P2.photozerrd1, P2.flag, R.fieldQall, R.opdbq into mydb.sdss_dr7_photo_and_spec_1 from Galaxy as G left outer join SpecObj as S on G.objID = S.bestObjID left outer join Photoz as P1 on G.objID = P1.objid left outer join Photoz2 as P2 on G.objID = P2.objid left outer join RunQA as R on G.fieldID=R.fieldID WHERE G.dec>50.0 AND (G.petroMag_r-G.extinction_r)<=18.0 AND ((G.flags_r & 0x10000000) != 0) AND ((G.flags_r & 0x8100000c00a0) = 0) AND (((G.flags_r & 0x400000000000) = 0) or (G.psfmagerr_r <= 0.2)) AND (((G.flags_r & 0x100000000000) = 0) or (G.flags_r & 0x1000) = 0) AND (G.primTarget & dbo.fPrimTarget('TARGET_GALAXY') > 0 OR G.primTarget & dbo.fPrimTarget('TARGET_GALAXY_BIG') > 0 OR G.primTarget & dbo.fPrimTarget('TARGET_GALAXY_BRIGHT_CORE') > 0 OR S.primTarget & dbo.fPrimTarget('TARGET_GALAXY') > 0 OR S.primTarget & dbo.fPrimTarget('TARGET_GALAXY_BIG') > 0 OR S.primTarget & dbo.fPrimTarget('TARGET_GALAXY_BRIGHT_CORE') > 0) -- sdss_dr7_photo_and_spec_1 : G.dec>50.0 -- sdss_dr7_photo_and_spec_2 : G.dec>40.0 AND G.dec<=50.0 -- sdss_dr7_photo_and_spec_3 : G.dec>30.0 AND G.dec<=40.0 -- sdss_dr7_photo_and_spec_4 : G.dec>20.0 AND G.dec<=30.0 -- sdss_dr7_photo_and_spec_5 : G.dec>10.0 AND G.dec<=20.0 -- sdss_dr7_photo_and_spec_6 : G.dec> 0.0 AND G.dec<=10.0 -- sdss_dr7_photo_and_spec_7 : G.dec<= 0.0

  6. Flux: 'PETRO', 'MODEL'‚ SDSS ugriz BESSELL UBVRI kcorrect -Mike Blanton kcorrect - K-corrections in ugriz satisfying m = M + DM(z) + K(z) based on the best fit sum of templates mtol - current stellar mass-to-light ratios from model in each band mass - total current stellar mass from model mets - average metallicity in current stars intsfh - total integrated star formation history absmag - absolute magnitude (for missing data, substitutes model fit). (evolution correction *not* applied) amivar - inverse variance of absolute magnitude chi2 - chi^2 of fit b300 - [ngals] star-formation within last 300Myrs relative to average star-formation rate b1000 - [ngals] star-formation within last 1Gyrs relative to average star-formation rate Fixing collisions

  7. labmda eta lambda

  8. The prob(z) values are tabulated for 100 redshift bins, centered at z = 0.03 to 1.47, with redshift spacing dz = 1.44/99 --------------------------------------------------------------------------- Column What Unit Description --------------------------------- 0 Run SDSS Run number (part of the 5 part run-rerun-camcol-field-obj ID) 1 Rerun SDSS Rerun number (part of the 5 part run-rerun-camcol-field-obj ID) 2 Camcol SDSS Camcol number (part of the 5 part run-rerun-camcol-field-obj ID) 3 Field SDSS Field number (part of the 5 part run-rerun-camcol-field-obj ID) 4 Obj SDSS Obj number (part of the 5 part run-rerun-camcol-field-obj ID) 5 photozcc2 "cc2" photo-z from the photoz2 table in the CAS 6 photozerrcc2 Error on "cc2" photo-z from the photoz2 table in the CAS 7 photozd1 "d1" photo-z from the photoz2 table in the CAS 8 photozerrd1 Error on "d1" photo-z from the photoz2 table in the CAS 9 Flag Integer flag on photo z 10 ObjID SDSS 64-bit unique object id number 11 RA Deg J2000 Right Ascension of object 12 DEC Deg J2000 Declination of object 13-112 prob(z) Photometric redshift probability distribution function for object

  9. SERSIC_AMP[5]: The best fit to the variable "A" in Equation (1) of Blanton et al. (2003), for each band. (nanomaggies/arcsec^2) SERSIC_R0[5]: The best fit to the variable "r_0" in Equation (1) of Blanton et al. (2003), for each band. (arcsec) SERSIC_N[5]: The best fit to the Sersic index "n" in Equation (1) of Blanton et al. (2003), for each band. SERSIC_CHI2[5]: chi^2 for the fit in each band SERSIC_COVAR[2,2,5]: Covariance matrix between SERSIC_R0 and SERSIC_N in the fit for each band. SERSIC_NPROF[5]: The number of profMean annuli used in the fit (see documentation of the radial profile annuli at the SDSS web site) SERSIC_FLUX[5]: Flux in best fit model in each band (nanomaggies) SERSIC_R50[5]: 50% light radius of best fit model in each band (arcsec) SERSIC_R90[5]: 90% light radius of best fit model in each band (arcsec) SERSIC_PETROFLUX[5]: Flux if SDSS Petrosian flux was measured on best fit model in each band (nanomaggies) SERSIC_PETROR50[5]: 50% light radius if SDSS Petrosian measurement was made on best fit model in each band (arcsec) SERSIC_PETROR90[5]: 90% light radius if SDSS Petrosian measurement was made on best fit model in each band (arcsec) SERSIC_CANON_AMP[5]: The best fit to the variable "A" in Equation (1) of Blanton et al. (2003), for each band, using SERSIC_R0 and SERSIC_N fixed at their best fit values for the i-band. (nanomaggies/arcsec^2) SERSIC_CANONFLUX[5]: Flux in best fit in each band using using SERSIC_R0 and SERSIC_N fixed at their best fit values for the i-band. (nanomaggies) SERSIC_CANONPETROFLUX[5]: Petrosian flux in best fit in each band using using SERSIC_R0 and SERSIC_N fixed at their best fit values for the i-band. (nanomaggies) This figure shows a comparison for DR4 data. The x-axis shows the stellar mass from Guinevere's modelling (Kauffmann et al 2003, K03). The y-axis shows the median difference between the K03 mass estimates and those obtained from fitting to the total magnitudes (blue) and to the fibre magnitudes scaled to total (green-ish).

  10. ; 0 nn5 with spec z objects only ;flux limited ;zmin=0.01 zmax~0.1 ; 1 edge correction ; 2 nn10 with spec z objects only ; 3 edge correction ; 4 nn5 with spec z objects only ;volume limited Mr=-20 ;zmin=0.02 zmax~0.085 ; 5 edge correction ; 6 nn10 with spec z objects only ; 7 edge correction ; 8 nn5 with spec z objects only ;volume limited Mr=-19 ;zmin=0.02 zmax~0.055 ; 9 edge correction ; 10 nn10 with spec z objects only ; 11 edge correction ; 12 nn5 with spec z objects only ;mass limited mass>10.0 ; 13 edge correction ; 14 nn10 with spec z objects only ; 15 edge correction ; 16 nn5 with spec z objects only ;mass limited mass>10.5 ; 17 edge correction ; 18 nn10 with spec z objects only ; 19 edge correction ; 20 mean density from volume limited Mr=-19 ; 21 mean density from volume limited Mr=-20 ; 22 fiber collision correction ; 23 nn5 with spec z objects only ;volume limited MB=-19.3-z ;zmin=0.02 zmax~0.09 ; 24 edge correction ; 25 nn10 with spec z objects only ; 26 edge correction ; 27 mean density from volume limited MB=-19.3-z ; 28 nn5 with spec z objects only ;volume limited MB=-20.5-z ;zmin=0.02 zmax>>0.1 ; 29 edge correction ; 30 nn10 with spec z objects only ; 31 edge correction ; 32 mean density from volume limited MB=-20.5-z Thanks a lot for Katarina’s advice!

  11. Disentangle Environment & Mass Disentangle Environment & Mass Red in D4 dense Environment efficiency: Red in D1 under dense Density: 5nn, volume limited MB=-19.3-z z=0.02-0.85 Quartile: defined by mass>10.5

  12. Disentangle Environment & Mass Disentangle Environment & Mass Red in D4 dense Environment efficiency: Red in D1 under dense (U-R)rest log( 1+delta) log( 1+delta)

  13. Disentangle Environment & Mass Red in D4 dense Environment efficiency: Define the environment efficiency: ε ε ~ z,delta Red in D1 under dense

  14. Baldry 2006 Define the environment efficiency: ε ε ~ z,delta

  15. Disentangle Environment & Mass z: 0.2-0.5 ε z: 0.5-0.7 z: 0.7-1.0 log mass*

  16. Mass>11.3

  17. Mass>11.3 Mass>11.3

  18. Mass>11.3 Mass>11.3

  19. Mass>11.3 Mass>11.3

  20. Possible for the 20K sample shear tensor.: eigenvalues of ξij: (λ1, λ2, λ3) shear ellipticity e and prolatenessp: ν = δ/σ = λ1 + λ2 + λ3

More Related