Bayesian classification
This presentation is the property of its rightful owner.
Sponsored Links
1 / 11

BAYESIAN CLASSIFICATION PowerPoint PPT Presentation


  • 92 Views
  • Uploaded on
  • Presentation posted in: General

BAYESIAN CLASSIFICATION. Overview. Bayesian classification adalah pengklasifikasian statistik yang dapat digunakan untuk memprediksi probabilitas keanggotaan suatu class. BC didasarkan pada teorema Bayes yg memiliki kemampuan klasifikasi serupa dengan decision tree dan neural network

Download Presentation

BAYESIAN CLASSIFICATION

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Bayesian classification

BAYESIAN CLASSIFICATION


Overview

Overview

  • Bayesian classification adalah pengklasifikasian statistik yang dapat digunakan untuk memprediksi probabilitas keanggotaan suatu class.

  • BC didasarkan pada teorema Bayes yg memiliki kemampuan klasifikasi serupa dengan decision tree dan neural network

  • Memiliki akurasi dan kecepatan yg tinggi saat diaplikasikan ke dalam database yg besar


Bentuk umum teorema bayes

Bentuk umum teorema Bayes

P(H I X) = P(X I H) P(H)

P(X)

Keterangan :

X:data dgn class yg belum diketahui

H:hipotesis data X

P(HIX) :probabilitas hipotesis H berdasar kondisi X (posteriori probability)

P(H):probabilitas hipotesis H (prior porbability)

P(XIH) :probabilitas X berdasar kondisi pada hipotesis H

P(X):probabilitas dari X


Contoh

Contoh


Contoh1

Contoh

  • Dari tabel diatas, terdpt 2 class dari klasifikasi yg dibentuk, yaitu:

    • C1 = buys_computer = yes

    • C2 = buys_cumputer = no

  • Misalnya, terdapat data X yg belum diketahui class-nya dgn data sbb:

    • X=(age=“<=30”, income=“medium”, student=“yes”, credit_rating=“fair”)

    • Buys_computer ?


Penyelesaian

Penyelesaian

  • Dibutuhkan utk memaksimalkan:

    P(XICi) P(Ci) utk i=1,2

  • P(Ci) merupakan prior probability utk setiap class berdasarkan data, contoh:

    • P(buys_computer=“yes”)= 9/14 = 0,643

    • P(buys_computer=“no”)= 5/14 = 0,357


Hitung p x i ci utk i 1 2

Hitung P(XICi) utk i=1,2

  • P(age=“<30” I buys_computer=“yes”)=2/9=0,222

  • P(age=“<30” I buys_computer=“no”)=3/5=0,6

  • P(income=“medium” I buys_computer=“yes”)=4/9=0,444

  • P(income=“medium” I buys_computer=“no”)=2/5=0,4


Hitung p x i ci utk i 1 21

Hitung P(XICi) utk i=1,2

  • P(student=“yes” I buys_computer=“yes”)=6/9=0,667

  • P(student=“yes” I buys_computer=“no”)=1/5=0,2

  • P(credit-rating=“fair” I buys_computer=“yes”)=6/9=0,667

  • P(credit-rating=“fair” I buys_computer=“no”)=2/5=0,4


Hitung p x i ci utk i 1 22

Hitung P(XICi) utk i=1,2

  • P(X I buys_computer=“yes”)

    = 0,222 x 0,444 x 0,677 x 0,677 = 0,044

  • P(XI buys_computer=“no”)

    = 0,600 x 0,400 x 0,200 x 0,400 = 0,019

  • P(X I buys_computer=“yes”) P(buys_computer=“yes”)

    = 0,044 x 0,643 = 0,028

  • P(X I buys_computer=“no”) P(buys_computer=“no”)

    = 0,019 x 0,357 = 0,007


Hasil

Hasil

  • Berdasarkan perhitungan, P(XICi) P(Ci) utk i=1,2

  • Maka :

    P(X I buys_computer=“yes”) P(buys_computer=“yes”)

    = 0,044 x 0,643 = 0,028

    P(X I buys_computer=“no”) P(buys_computer=“no”)

    = 0,019 x 0,357 = 0,007

    Nilai yg tertinggi adalah 0,028  Untuk kasus:

    X=(age = “<=30”,

    income = “medium”,

    student = “yes”,

    credit_rating = “fair”)

    Maka  buys_computer  “Yes”


  • Selesai

    Selesai


  • Login